机构地区:[1]Laboratory of Physiopathology, Genetics Molecular and Biotechnology (PGMB), Faculty of Sciences Ain Chock, Research Center: Health & Biotechnology, University Hassan II of Casablanca, Casablanca, Morocco [2]Laboratory of Genetic and Molecular Pathology (LGPM), Medical School, Hassan II University, Casablanca, Morocco [3]Institute of Biochemistry Vegetal and Photosynthesis (IBVF-CSIC University of Seville), Seville, Spain
出 处:《Advances in Bioscience and Biotechnology》2017年第12期491-507,共17页生命科学与技术进展(英文)
摘 要:Staphylococcus aureus is one of the main pathogenic agents responsible for nosocomial and community-acquired bacterial infections. The pathogenicity of this Gram-positive bacterium is ensured by its different adhesion factors. Collagen and the extracellular glycoprotein adhesin are among the Staphylococcus most important virulence factors. It has been shown that most of the S. aureus strains carry the ica operon, responsible for biofilm production. However, the coexpression of the icaA and the icaD genes is necessary for complete biofilm synthesis. The aim of our study was to study a collection of 15 clinical strains of S. aureus from different sources for the presence of can and icaD genes coding intercellular adhesion proteins. We also intended to estimate the strains’ ability to form biofilms by the red Cong method and to test the adhesion ability of S. aureus to the ciliated protist Tetrahymena pyriformis, which we used as a novel cellular adhesion model. Finally, we checked the adhesion’s inhibition capacity of some plants extracts. The molecular detection of adhesion genes revealed that 80% of strains are cna positive, and 73% are icaD positive. Qualitative biofilm production of S. aureus revealed that 66.6% of strains were slime producers. The adhesion test revealed that 20% of strains are strongly adhering to T. pyriformis and that the Clematis cirrhosa extract has an anti-adhering effect of S. aureus to the ciliate T. pyriformis.Staphylococcus aureus is one of the main pathogenic agents responsible for nosocomial and community-acquired bacterial infections. The pathogenicity of this Gram-positive bacterium is ensured by its different adhesion factors. Collagen and the extracellular glycoprotein adhesin are among the Staphylococcus most important virulence factors. It has been shown that most of the S. aureus strains carry the ica operon, responsible for biofilm production. However, the coexpression of the icaA and the icaD genes is necessary for complete biofilm synthesis. The aim of our study was to study a collection of 15 clinical strains of S. aureus from different sources for the presence of can and icaD genes coding intercellular adhesion proteins. We also intended to estimate the strains’ ability to form biofilms by the red Cong method and to test the adhesion ability of S. aureus to the ciliated protist Tetrahymena pyriformis, which we used as a novel cellular adhesion model. Finally, we checked the adhesion’s inhibition capacity of some plants extracts. The molecular detection of adhesion genes revealed that 80% of strains are cna positive, and 73% are icaD positive. Qualitative biofilm production of S. aureus revealed that 66.6% of strains were slime producers. The adhesion test revealed that 20% of strains are strongly adhering to T. pyriformis and that the Clematis cirrhosa extract has an anti-adhering effect of S. aureus to the ciliate T. pyriformis.
关 键 词:Staphylococcus aureus Adhering Genes (can and icaD) TETRAHYMENA PYRIFORMIS Biofilm Production Plant Extract ANTI-ADHESION Effect
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...