Role of Fungal Biomass in N-Hexane Biofiltration  

Role of Fungal Biomass in N-Hexane Biofiltration

在线阅读下载全文

作  者:Mena M. Botros Ashraf Aly Hassan George A. Sorial 

机构地区:[1]1The Ohio State Wexner Medical Center, Columbus, OH, USA [2]Civil Engineering Department, University of Nebraska Lincoln, Lincoln, NE, USA [3]Department of Biomedical Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA

出  处:《Advances in Microbiology》2017年第10期673-688,共16页微生物学(英文)

摘  要:The biofiltration of n-hexane is studied to optimize determinants factors of hydrophobic VOC filtration efficiency. Four trickle-bed air biofilters (TBABs) were employed;two of which were supplied with nutrients buffered at a neutral pH, while another two at an acidic pH of 4 to induce and enhance fungal growth. The loading rate of n-hexane was kept constant in all TBABs at 13 g/m3/h. At each pH levels studied, the biomass of the TBABs was pre-acclimated using different ratios of n-hexane and methanol. The fungal biomass responsible for the degradation of n-hexane was then examined and quantified. Dichloran Rose Bengal Chloramphenicol agar was used for fungi quantification, and optical microscopy for classification. Effluent biomass was validated by measuring volatile suspended solids. Fungal counts resulting from n-hexane biodegradation were related to nitrate and carbon consumption. It was found that n-hexane elimination capacity closely followed biomass growth, and reached a steady-state at an optimum biomass density of roughly 3000 cfu/ml. Major shifts in fungal species were observed in all TBABs. Dominant fungal species grew slowly to become the most numerous, and were found to provide maximum elimination capacity, although TBABs pre-acclimated to higher methanol concentrations took less time to reach this steady-state. It was concluded, therefore, that steady and monitored growth of TBAB biomass is an essential factor in maximizing fungi’s ability to metabolize VOCs and that a new ecological biofiltration model may be the most effective at VOC purification.The biofiltration of n-hexane is studied to optimize determinants factors of hydrophobic VOC filtration efficiency. Four trickle-bed air biofilters (TBABs) were employed;two of which were supplied with nutrients buffered at a neutral pH, while another two at an acidic pH of 4 to induce and enhance fungal growth. The loading rate of n-hexane was kept constant in all TBABs at 13 g/m3/h. At each pH levels studied, the biomass of the TBABs was pre-acclimated using different ratios of n-hexane and methanol. The fungal biomass responsible for the degradation of n-hexane was then examined and quantified. Dichloran Rose Bengal Chloramphenicol agar was used for fungi quantification, and optical microscopy for classification. Effluent biomass was validated by measuring volatile suspended solids. Fungal counts resulting from n-hexane biodegradation were related to nitrate and carbon consumption. It was found that n-hexane elimination capacity closely followed biomass growth, and reached a steady-state at an optimum biomass density of roughly 3000 cfu/ml. Major shifts in fungal species were observed in all TBABs. Dominant fungal species grew slowly to become the most numerous, and were found to provide maximum elimination capacity, although TBABs pre-acclimated to higher methanol concentrations took less time to reach this steady-state. It was concluded, therefore, that steady and monitored growth of TBAB biomass is an essential factor in maximizing fungi’s ability to metabolize VOCs and that a new ecological biofiltration model may be the most effective at VOC purification. Keywords

关 键 词:BIOFILTRATION N-HEXANE Trickle BED Air BIOFILTER (TBAB) VOCs FUNGI 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象