机构地区:[1]Department of Microbiology and Biotechnology, Faculty of Pharmacy, Delta University for Science and Technology, Cairo, Egypt [2]Faculty of Dentistry, Mansoura University, Mansoura, Egypt [3]Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo, Egypt [4]Department of Microbiology and Immunology, School of Pharmacy & Pharmaceutical Industries, Badr University in Cairo (BUC), Cairo, Egypt
出 处:《Advances in Microbiology》2019年第1期87-101,共15页微生物学(英文)
摘 要:Purpose: Bacterial adhesion represents the initial step in biofilm formation, dental caries and decay. This study aimed to evaluate and compare surface roughness and bacterial adhesion to bulk fill resin composites polished with different systems. Methods: Filtek Z350 XT (Incremental-fill resin composite), Filtek Bulk-fill Posterior (Bulk-fill resin composite), and Tetric N Ceram (Bulk-fill resin composite) were used as resin composites. The polishing systems used in this study were Sof-Lex multi-step, PoGo one step, and Mylar strip. Scanning electron microscope (SEM) was used to examine the surface roughness and adhesion of Streptococcus mutans ATCC 25175 standard strain to bulk-fill resin composites. Results: The type of restorative materials did not affect the surface roughness or bacterial adhesion (p > 0.05) but the polishing systems were significant (p R = 0.943) between surface roughness and bacterial adhesion to the tested surfaces. Conclusion: Regardless of the restorative material, Mylar polishing system revealed the smoothest surface and the lowest adhesion of S. mutans as compared to Pogo one step and Sof-Lex multi-step polishing systems.Purpose: Bacterial adhesion represents the initial step in biofilm formation, dental caries and decay. This study aimed to evaluate and compare surface roughness and bacterial adhesion to bulk fill resin composites polished with different systems. Methods: Filtek Z350 XT (Incremental-fill resin composite), Filtek Bulk-fill Posterior (Bulk-fill resin composite), and Tetric N Ceram (Bulk-fill resin composite) were used as resin composites. The polishing systems used in this study were Sof-Lex multi-step, PoGo one step, and Mylar strip. Scanning electron microscope (SEM) was used to examine the surface roughness and adhesion of Streptococcus mutans ATCC 25175 standard strain to bulk-fill resin composites. Results: The type of restorative materials did not affect the surface roughness or bacterial adhesion (p > 0.05) but the polishing systems were significant (p R = 0.943) between surface roughness and bacterial adhesion to the tested surfaces. Conclusion: Regardless of the restorative material, Mylar polishing system revealed the smoothest surface and the lowest adhesion of S. mutans as compared to Pogo one step and Sof-Lex multi-step polishing systems.
关 键 词:Bacterial ADHESION Surface Roughness STREPTOCOCCUS MUTANS Polishing SYSTEMS
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...