Structural and Functional Insights into an Arabidopsis NBS-LRR Receptor in Nicotiana benthamiana  

Structural and Functional Insights into an Arabidopsis NBS-LRR Receptor in Nicotiana benthamiana

在线阅读下载全文

作  者:Jianzhong Huang Xiuying Guan Xiaoju Zhong Peng Jia Hongbin Zhang Honglei Ruan Jianzhong Huang;Xiuying Guan;Xiaoju Zhong;Peng Jia;Hongbin Zhang;Honglei Ruan(Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou, China)

机构地区:[1]Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou, China

出  处:《American Journal of Molecular Biology》2024年第2期84-96,共13页美国分子生物学期刊(英文)

摘  要:Nucleotide-binding site leucine-rich repeat receptors (NBS-LRR/NLRs) are crucial intracellular immune proteins in plants. Previous article reported a novel NLR protein SUT1 (SUPPRESSORS OF TOPP4-1, 1), which is involved in autoimmunity initiated by type one protein phosphatase 4 mutation (topp4-1) in Arabidopsis, however, its role in planta is still unclear. This study employed Nicotiana benthamiana, a model platform, to conduct an overall structural and functional analysis of SUT1 protein. The transient expression results revealed that SUT1 is a typical CNL (CC-NBS-LRR) receptor, both fluorescence data and biochemical results showed the protein is mainly anchored on the plasma membrane due to its N-terminal acylation site. Further truncation experiments announced that its CC (coiled-coil) domain possessed cell-death-inducing activity. The outcomes of point mutations analysis revealed that not only the CC domain, but also the full-length SUT1 protein, whose function and subcellular localization are influenced by highly conserved hydrophobic residues. These research outcomes provided favorable clues for elucidating the activation mechanism of SUT1.Nucleotide-binding site leucine-rich repeat receptors (NBS-LRR/NLRs) are crucial intracellular immune proteins in plants. Previous article reported a novel NLR protein SUT1 (SUPPRESSORS OF TOPP4-1, 1), which is involved in autoimmunity initiated by type one protein phosphatase 4 mutation (topp4-1) in Arabidopsis, however, its role in planta is still unclear. This study employed Nicotiana benthamiana, a model platform, to conduct an overall structural and functional analysis of SUT1 protein. The transient expression results revealed that SUT1 is a typical CNL (CC-NBS-LRR) receptor, both fluorescence data and biochemical results showed the protein is mainly anchored on the plasma membrane due to its N-terminal acylation site. Further truncation experiments announced that its CC (coiled-coil) domain possessed cell-death-inducing activity. The outcomes of point mutations analysis revealed that not only the CC domain, but also the full-length SUT1 protein, whose function and subcellular localization are influenced by highly conserved hydrophobic residues. These research outcomes provided favorable clues for elucidating the activation mechanism of SUT1.

关 键 词:CC-NBS-LRR Hypersensitive Response Nicotiana benthamiana Plasma Membrane Localization 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象