Spontaneous Unfolding and Refolding of Plantaricin α-Helix in Molecular Dynamics Simulation  

Spontaneous Unfolding and Refolding of Plantaricin α-Helix in Molecular Dynamics Simulation

在线阅读下载全文

作  者:Shaomin Yan Guang Wu 

机构地区:[1]State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Bio-Refinery, Guangxi Academy of Sciences, Nanning, China

出  处:《Computational Molecular Bioscience》2019年第1期27-39,共13页计算分子生物学(英文)

摘  要:Antimicrobial peptides are promising therapeutic agents in view of increasing resistance to conventional antibiotics. Antimicrobial peptides usually fold in α-helical, β-sheet, and extended/random-coil structures. The α-helical antimicrobial peptides are often unstructured in aqueous solution but become structured on bacterial membrane. The α-helical structure allows the partitioning into bacterial membrane. Therefore it is important to understand the mechanism of unfolding and refolding of α-helical structure in antimicrobial peptides. It is not very easy to obverse and study the process of unfolding and refolding of α-helical antimicrobial peptides because of their rapidity. Therefore, molecular simulation provides a way to observe and explain this phenomenon. Plantaricin A is a 26 amino-acid antimicrobial pheromone peptide and can spontaneously unfold and refold under physiological condition. This study demonstrated the unfolding and refolding of plantaricin A by means of molecular simulation, and its mechanism was discussed with its implication to the Levinthal paradox.Antimicrobial peptides are promising therapeutic agents in view of increasing resistance to conventional antibiotics. Antimicrobial peptides usually fold in α-helical, β-sheet, and extended/random-coil structures. The α-helical antimicrobial peptides are often unstructured in aqueous solution but become structured on bacterial membrane. The α-helical structure allows the partitioning into bacterial membrane. Therefore it is important to understand the mechanism of unfolding and refolding of α-helical structure in antimicrobial peptides. It is not very easy to obverse and study the process of unfolding and refolding of α-helical antimicrobial peptides because of their rapidity. Therefore, molecular simulation provides a way to observe and explain this phenomenon. Plantaricin A is a 26 amino-acid antimicrobial pheromone peptide and can spontaneously unfold and refold under physiological condition. This study demonstrated the unfolding and refolding of plantaricin A by means of molecular simulation, and its mechanism was discussed with its implication to the Levinthal paradox.

关 键 词:ALPHA-HELIX ANTIMICROBIAL Peptides Protein FOLDING Plantaricin A 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象