检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Dursun Gündüz Muhammad Aslam Dursun Gündüz;Muhammad Aslam(Department of Cardiology/Angiology, University Hospital Giessen (UKGM), Giessen, Germany)
机构地区:[1]Department of Cardiology/Angiology, University Hospital Giessen (UKGM), Giessen, Germany
出 处:《Journal of Biomedical Science and Engineering》2016年第4期177-190,共14页生物医学工程(英文)
摘 要:MicroRNAs (miRs) are a class of small (~22 nucleotides), widely distributed, and highly conserved non-coding RNA molecules and play an important post-transcriptional regulatory role by targeting mRNA. Embryonic and induced pluripotent stem cells (ESCs and iPSC, respectively) hold great promise for vascular regenerative therapies. However, several limitations currently prohibit their therapeutic use. The importance of miRs in controlling the gene expression profile of a particular cell type is emerging and a multitude of miRs have been identified that play key roles in vascular development and regeneration. A combination of pluripotency transcription factors and different miRs not only enhances the pluripotency of stem cells but also has been reported to enhance their endothelial differentiation. This review will summarize the findings that focus different miR clusters in the induction, maintenance, and directed endothelial differentiation of ESCs and iPSCs.MicroRNAs (miRs) are a class of small (~22 nucleotides), widely distributed, and highly conserved non-coding RNA molecules and play an important post-transcriptional regulatory role by targeting mRNA. Embryonic and induced pluripotent stem cells (ESCs and iPSC, respectively) hold great promise for vascular regenerative therapies. However, several limitations currently prohibit their therapeutic use. The importance of miRs in controlling the gene expression profile of a particular cell type is emerging and a multitude of miRs have been identified that play key roles in vascular development and regeneration. A combination of pluripotency transcription factors and different miRs not only enhances the pluripotency of stem cells but also has been reported to enhance their endothelial differentiation. This review will summarize the findings that focus different miR clusters in the induction, maintenance, and directed endothelial differentiation of ESCs and iPSCs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222