Assessment and Inventory of Forest Ecosystems Biodiversity: Case Study for Karelian Isthmus of Leningrad Region, Russia  

Assessment and Inventory of Forest Ecosystems Biodiversity: Case Study for Karelian Isthmus of Leningrad Region, Russia

在线阅读下载全文

作  者:Alexander S. Alekseev 

机构地区:[1]Department of Forest Inventory, Management and GIS, Sankt-Petersburg State Forest Technical University, Sankt-Petersburg, Russia

出  处:《Open Journal of Ecology》2018年第5期305-323,共19页生态学期刊(英文)

摘  要:Regular grid of permanent sample plots (PSP) of ICP-Forests monitoring system was used for forest ecosystems biodiversity assessments and inventory. The supplementary features were added to the PSP structure to conduct biological diversity census: eight sample plots 1 × 1 m for geo-botanical description;two sample plots of 5 × 5 m each for description of the PSP’s undergrowth;one 25 × 25 m plot for coarse woody debris estimations;four soil inventory pits. The total number of PSP amounted to 248. Total data used are as following: 1) 1984 geo-botanical descriptions of vegetation belonging to ground cover layers made on 1 × 1 m sample plots;2) 496 descriptions of undergrowth on 5 × 5 m sample plots;3) 178 descriptions of woody debris on 25 × 25 m sample plots;4) 496 descriptions of soil inventory pits. General statistical indicators characterizing forest land cover diversity were calculated. Statistic indicators of α-diversity for the Karelian Isthmus forest vegetation cover have the following values: 1) m (mean number of species per PSP) = 26 species;2) σ (standard deviation) = 9.5 species;3) v (variation coefficient) = 36.5%;4) Р (deviation amplitude) = 60 – 7 = 53 species. β – diversity of forest ecosystems as well as γ – diversity also was studied on the base of information collected on the same regular grid of sample plots. It appears that sample plots distribution by species diversity gradation is well described by the standard curve of normal distribution for the entire Karelian Isthmus forest (determination coefficient of the curve being 95.2%) as well as for each type of forest. Hence, the criterion (standard) of biodiversity for forest ecosystems can be defined as the mean value of alpha diversity for each forest type group – m;and the standard deviation – σ, as a tool for assessing deviations from the standard. PSP locations are fixed using GPS technology, this allows biodiversity assessments at the same place in the next years for biodiversity trends estimations and consist the frRegular grid of permanent sample plots (PSP) of ICP-Forests monitoring system was used for forest ecosystems biodiversity assessments and inventory. The supplementary features were added to the PSP structure to conduct biological diversity census: eight sample plots 1 × 1 m for geo-botanical description;two sample plots of 5 × 5 m each for description of the PSP’s undergrowth;one 25 × 25 m plot for coarse woody debris estimations;four soil inventory pits. The total number of PSP amounted to 248. Total data used are as following: 1) 1984 geo-botanical descriptions of vegetation belonging to ground cover layers made on 1 × 1 m sample plots;2) 496 descriptions of undergrowth on 5 × 5 m sample plots;3) 178 descriptions of woody debris on 25 × 25 m sample plots;4) 496 descriptions of soil inventory pits. General statistical indicators characterizing forest land cover diversity were calculated. Statistic indicators of α-diversity for the Karelian Isthmus forest vegetation cover have the following values: 1) m (mean number of species per PSP) = 26 species;2) σ (standard deviation) = 9.5 species;3) v (variation coefficient) = 36.5%;4) Р (deviation amplitude) = 60 – 7 = 53 species. β – diversity of forest ecosystems as well as γ – diversity also was studied on the base of information collected on the same regular grid of sample plots. It appears that sample plots distribution by species diversity gradation is well described by the standard curve of normal distribution for the entire Karelian Isthmus forest (determination coefficient of the curve being 95.2%) as well as for each type of forest. Hence, the criterion (standard) of biodiversity for forest ecosystems can be defined as the mean value of alpha diversity for each forest type group – m;and the standard deviation – σ, as a tool for assessing deviations from the standard. PSP locations are fixed using GPS technology, this allows biodiversity assessments at the same place in the next years for biodiversity trends estimations and consist the fr

关 键 词:Plant BIODIVERSITY ICP-Forests Program Forest ECOSYSTEMS α- β- γ-Diversity Regular Grid of Sample PLOTS BIODIVERSITY Standards. 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象