机构地区:[1]Laboratory Animal Research Center, Chongqing University School of Medicine, Chongqing, China [2]Department of Tropical Medicine, Third Military Medical University, Chongqing, China [3]Cancer Center, Daping Hospital, Third Military Medical Center, Chongqing, China [4]Cornell University, Ithaca, USA [5]Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, China [6]State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Third Military Medical University, Chongqing, China [7]State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force Medicine, Third Military Medical University, Chongqing, China
出 处:《Stem Cell Discovery》2021年第1期1-13,共13页干细胞探索(英文)
摘 要:Umbilical cord blood (UCB) is a current major source of hematopoietic stem cells (HSCs) for cell transplantation therapy. Cell transplantation with HSCs derived from UCB is advantageous over transplantation with HSCs from adult tissues. However, the low number of HSC derived from a single unit of UCB limits its application. Thus,<i> ex vivo</i> expansion is a good option to create more UCB HSCs for clinical application. The strategies for HSC expansion <i>in vitro</i> focus on mimicking the composition and structure of HSC natural niche by enhancing self-renewal and inhibiting lineage differentiation of HSCs. In the past decade, the mechanisms of the interaction between HSC and the natural niche have been deeply investigated. This great progress in basic research has led to advancements in UCB HSC<i> ex vivo</i> expansion. In addition, the biological characteristics of the originally isolated UCB HSCs correlate with outcome of subsequent<i> ex vivo</i> expansion. In this paper, we summarize the late progress achieved in isolation and<i> ex vivo</i> expansion of UCB HSCs. Importantly, we attempt to provide an impact and practicable procedure to expand UCB HSC <i>in vitro</i> from isolation of original HSCs to identification of expanded HSCs.Umbilical cord blood (UCB) is a current major source of hematopoietic stem cells (HSCs) for cell transplantation therapy. Cell transplantation with HSCs derived from UCB is advantageous over transplantation with HSCs from adult tissues. However, the low number of HSC derived from a single unit of UCB limits its application. Thus,<i> ex vivo</i> expansion is a good option to create more UCB HSCs for clinical application. The strategies for HSC expansion <i>in vitro</i> focus on mimicking the composition and structure of HSC natural niche by enhancing self-renewal and inhibiting lineage differentiation of HSCs. In the past decade, the mechanisms of the interaction between HSC and the natural niche have been deeply investigated. This great progress in basic research has led to advancements in UCB HSC<i> ex vivo</i> expansion. In addition, the biological characteristics of the originally isolated UCB HSCs correlate with outcome of subsequent<i> ex vivo</i> expansion. In this paper, we summarize the late progress achieved in isolation and<i> ex vivo</i> expansion of UCB HSCs. Importantly, we attempt to provide an impact and practicable procedure to expand UCB HSC <i>in vitro</i> from isolation of original HSCs to identification of expanded HSCs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...