Application of Bayesian Approach in the Parameter Estimation of Continuous Lumping Kinetic Model of Hydrocracking Process  被引量:1

Application of Bayesian Approach in the Parameter Estimation of Continuous Lumping Kinetic Model of Hydrocracking Process

在线阅读下载全文

作  者:S. Sina Hosseini Boosari Neda Makouei Philip Stewart 

机构地区:[1]Department of Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA

出  处:《Advances in Chemical Engineering and Science》2017年第3期257-269,共13页化学工程与科学期刊(英文)

摘  要:Hydrocracking is a catalytic reaction process in the petroleum refineries for converting the higher boiling temperature residue of crude oil into a lighter fraction of hydrocarbons such as gasoline and diesel. In this study, a modified continuous lumping kinetic approach is applied to model the hydro-cracking of vacuum gas oil. The model is modified to take into consideration the reactor temperature on the reaction yield distribution. The model is calibrated by maximizing the likelihood function between the modeled and measured data at four different reactor temperatures. Bayesian approach parameter estimation is also applied to obtain the confidence interval of model parameters by considering the uncertainty associated with the measured errors and the model structural errors. Then Monte Carlo simulation is applied to the posterior range of the model parameters to obtain the 95% confidence interval of the model outputs for each individual fraction of the hydrocracking products. A good agreement is observed between the output of the calibrated model and the measured data points. The Bayesian approach based on the Markov Chain Monte Carlo simulation is shown to be efficient to quantify the uncertainty associated with the parameter values of the continuous lumping model.Hydrocracking is a catalytic reaction process in the petroleum refineries for converting the higher boiling temperature residue of crude oil into a lighter fraction of hydrocarbons such as gasoline and diesel. In this study, a modified continuous lumping kinetic approach is applied to model the hydro-cracking of vacuum gas oil. The model is modified to take into consideration the reactor temperature on the reaction yield distribution. The model is calibrated by maximizing the likelihood function between the modeled and measured data at four different reactor temperatures. Bayesian approach parameter estimation is also applied to obtain the confidence interval of model parameters by considering the uncertainty associated with the measured errors and the model structural errors. Then Monte Carlo simulation is applied to the posterior range of the model parameters to obtain the 95% confidence interval of the model outputs for each individual fraction of the hydrocracking products. A good agreement is observed between the output of the calibrated model and the measured data points. The Bayesian approach based on the Markov Chain Monte Carlo simulation is shown to be efficient to quantify the uncertainty associated with the parameter values of the continuous lumping model.

关 键 词:HYDROCRACKING CONTINUOUS LUMPING KINETIC Model Bayesian Approach Parameter Estimation MARKOV Chain MONTE Carlo 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象