Comprehensive Physicochemical Profiling and Characterization of Neem Plant Leaf Extracts: Insights for Pharmaceutical & Biomedical Applications  

Comprehensive Physicochemical Profiling and Characterization of Neem Plant Leaf Extracts: Insights for Pharmaceutical & Biomedical Applications

在线阅读下载全文

作  者:Martin Nduka Nwanekezie Julius Nnamdi Ndive Ijeoma Love Ogbonna Godspower O. Sebe Martin Nduka Nwanekezie;Julius Nnamdi Ndive;Ijeoma Love Ogbonna;Godspower O. Sebe(Department of Chemical Engineering, Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria;Department of Chemical, Chemistry and Biomedical Engineering, University of New Haven, West Haven, USA)

机构地区:[1]Department of Chemical Engineering, Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria [2]Department of Chemical, Chemistry and Biomedical Engineering, University of New Haven, West Haven, USA

出  处:《Advances in Chemical Engineering and Science》2023年第4期382-399,共18页化学工程与科学期刊(英文)

摘  要:This study presents a comprehensive physicochemical analysis of neem plant leaf extracts with a focus on their potential applications in pharmaceutical and biomedical contexts. Utilizing the soxhlet extraction method with n-hexane as the solvent, the study investigated the quantitative and qualitative composition of neem leaf extracts in reference to concentrations. The results revealed a diverse array of compounds, including cyanogenic glycoside, cardiac glycoside, tannin, steroids, phytate, flavone, oxalate, rutin, lunamarin, catechin, spatein, naringin, resveratrol, kaempferol, flavonones, epicatechin, and epihedrine, with notable concentrations. Further analyses indicated shared physicochemical properties, such as carboxyl and hydroxyl groups. Qualitative assessments affirmed the presence of flavonoid and phenolic compounds, while FTIR analysis confirmed the existence of carboxyl and hydroxyl groups. These findings emphasize the potential use of neem leaves as pharmaceutical raw materials due to their antioxidant-rich content. Additionally, the study explored the density, viscosity, saponification value, and foaming power of neem leaf extracts, providing insights into their industrial applicability. GC-MS analyses highlighted the presence of significant chemical compounds, with potential therapeutic implications. Mineral analysis demonstrated essential elements for human and animal nutrition. This study underscores neem plant leaves’ multifaceted potential across pharmaceutical, herbal medicine, cosmetic, and functional food sectors. It lays a solid foundation for further research into the specific health benefits, offering valuable insights for harnessing neem leaves’ potential in innovative products and treatments.This study presents a comprehensive physicochemical analysis of neem plant leaf extracts with a focus on their potential applications in pharmaceutical and biomedical contexts. Utilizing the soxhlet extraction method with n-hexane as the solvent, the study investigated the quantitative and qualitative composition of neem leaf extracts in reference to concentrations. The results revealed a diverse array of compounds, including cyanogenic glycoside, cardiac glycoside, tannin, steroids, phytate, flavone, oxalate, rutin, lunamarin, catechin, spatein, naringin, resveratrol, kaempferol, flavonones, epicatechin, and epihedrine, with notable concentrations. Further analyses indicated shared physicochemical properties, such as carboxyl and hydroxyl groups. Qualitative assessments affirmed the presence of flavonoid and phenolic compounds, while FTIR analysis confirmed the existence of carboxyl and hydroxyl groups. These findings emphasize the potential use of neem leaves as pharmaceutical raw materials due to their antioxidant-rich content. Additionally, the study explored the density, viscosity, saponification value, and foaming power of neem leaf extracts, providing insights into their industrial applicability. GC-MS analyses highlighted the presence of significant chemical compounds, with potential therapeutic implications. Mineral analysis demonstrated essential elements for human and animal nutrition. This study underscores neem plant leaves’ multifaceted potential across pharmaceutical, herbal medicine, cosmetic, and functional food sectors. It lays a solid foundation for further research into the specific health benefits, offering valuable insights for harnessing neem leaves’ potential in innovative products and treatments.

关 键 词:PHYTOCHEMICAL N-HEXANE Neem Leaves FTIR PHARMACEUTICAL BIOMEDICINE Biomedical Antioxidant Chemical HERBAL 

分 类 号:O62[理学—有机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象