Structures, Lipophilicity, Dipole Moments, Acidity and Spectroscopic Properties of Non-Steroidal Anti-Inflammatory Drugs Diclofenac, Bromfenac and Amfenac: A Theoretical Study  被引量:1

Structures, Lipophilicity, Dipole Moments, Acidity and Spectroscopic Properties of Non-Steroidal Anti-Inflammatory Drugs Diclofenac, Bromfenac and Amfenac: A Theoretical Study

在线阅读下载全文

作  者:Assoma Amon Benjamine Bede Affoué Lucie Yapo Kicho Denis Bamba El Hadji Sawaliho 

机构地区:[1]Laboratoire de Chimie Organique et de Substances Naturelles, Université Félix Houphouë t-Boigny, Abidjan, Cô te d’Ivoire

出  处:《Computational Chemistry》2019年第4期95-105,共11页计算化学(英文)

摘  要:This work is a contribution of theoretical chemistry to the classification of some non-steroidal anti-inflammatory drugs (NSAIDs). Indeed, research on the efficacy of NSAIDs has shown that no NSAID is recognized as the most efficient anti-inflammatory drug. We have made a theoretical study of diclofenac, bromfenac and amfenac, in order to compare their efficacy from some physicochemical properties. To do this, we used the DFT and TD-DTF methods at the B3LYP/6-311+G(d, p) level theory. The lipophilicity study shows that diclofenac and bromfenac are very lipophilic. Acidity study shows that diclofenac is more acid than bromfenac and amfenac. The results from molecular orbital and the TD-DFT calculations reveal that for the three NSAIDs, the lowest energy transition is due to the excitation from HOMO to LUMO. The absorption energy corresponding to H→L transition is comparable with the energy gap value. Our findings have shown that bromfenac is more reactive than amfenac, which is more reactive than diclofenac.This work is a contribution of theoretical chemistry to the classification of some non-steroidal anti-inflammatory drugs (NSAIDs). Indeed, research on the efficacy of NSAIDs has shown that no NSAID is recognized as the most efficient anti-inflammatory drug. We have made a theoretical study of diclofenac, bromfenac and amfenac, in order to compare their efficacy from some physicochemical properties. To do this, we used the DFT and TD-DTF methods at the B3LYP/6-311+G(d, p) level theory. The lipophilicity study shows that diclofenac and bromfenac are very lipophilic. Acidity study shows that diclofenac is more acid than bromfenac and amfenac. The results from molecular orbital and the TD-DFT calculations reveal that for the three NSAIDs, the lowest energy transition is due to the excitation from HOMO to LUMO. The absorption energy corresponding to H→L transition is comparable with the energy gap value. Our findings have shown that bromfenac is more reactive than amfenac, which is more reactive than diclofenac.

关 键 词:DICLOFENAC Bromfenac Amfenac DFT SPECTROSCOPIC Properties 

分 类 号:R96[医药卫生—药理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象