Folding and Unfolding Simulations of a Three-Stranded Beta-Sheet Protein  

Folding and Unfolding Simulations of a Three-Stranded Beta-Sheet Protein

在线阅读下载全文

作  者:Seung-Yeon Kim Seung-Yeon Kim(School of Liberal Arts and Sciences, Korea National University of Transportation, Chungju, Republic of Korea)

机构地区:[1]School of Liberal Arts and Sciences, Korea National University of Transportation, Chungju, Republic of Korea

出  处:《Journal of Materials Science and Chemical Engineering》2016年第1期13-17,共5页材料科学与化学工程(英文)

摘  要:Understanding the folding processes of a protein into its three-dimensional native structure only with its amino-acid sequence information is a long-standing challenge in modern science. Two- hundred independent folding simulations (starting from non-native conformations) and two- hundred independent unfolding simulations (starting from the folded native structure) are performed using the united-residue force field and Metropolis Monte Carlo algorithm for betanova (three-stranded antiparallel beta-sheet protein). From these extensive computer simulations, two representative folding pathways and two representative unfolding pathways are obtained in the reaction coordinates such as the fraction of native contacts, the radius of gyration, and the root- mean-square deviation. The folding pathways and the unfolding pathways are similar each other. The largest deviation between the folding pathways and the unfolding pathways results from the root-mean-square deviation near the folded native structure. In general, unfolding computer simulations could capture the essentials of folding simulations.Understanding the folding processes of a protein into its three-dimensional native structure only with its amino-acid sequence information is a long-standing challenge in modern science. Two- hundred independent folding simulations (starting from non-native conformations) and two- hundred independent unfolding simulations (starting from the folded native structure) are performed using the united-residue force field and Metropolis Monte Carlo algorithm for betanova (three-stranded antiparallel beta-sheet protein). From these extensive computer simulations, two representative folding pathways and two representative unfolding pathways are obtained in the reaction coordinates such as the fraction of native contacts, the radius of gyration, and the root- mean-square deviation. The folding pathways and the unfolding pathways are similar each other. The largest deviation between the folding pathways and the unfolding pathways results from the root-mean-square deviation near the folded native structure. In general, unfolding computer simulations could capture the essentials of folding simulations.

关 键 词:PROTEIN FOLDING UNFOLDING Computer Simulation 

分 类 号:G23[文化科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象