Effect of Silicon Carbide and Titanium Hydride on the Foamability of Aluminum Alloy (6061)  

Effect of Silicon Carbide and Titanium Hydride on the Foamability of Aluminum Alloy (6061)

在线阅读下载全文

作  者:Mohammad M. Hailat 

机构地区:[1]Department of Chemical Engineering, Albalqa Applied University, Alhuson, Jordan

出  处:《Journal of Materials Science and Chemical Engineering》2017年第6期1-11,共11页材料科学与化学工程(英文)

摘  要:Aluminum foam is a light weight material with good mechanical and energy absorption properties. In this study, aluminum foam composite was fabricated using aluminum powder 6061 and silicon carbide (SiC) powder. Titanium hydride (TiH2) was used as the foaming agent. Cold compact followed by hot pressing (sintering) was used to produce the composite precursor. Foaming was carried out, following the sintering process, by heating the aluminum composite precursor to a temperature above the melting point of aluminum (Al). The linear expansion of the foam and the percent porosity were found to increase as the SiC percentage decreased from 10 to 4%, whereas the density got lower. The percent porosity and linear expansion were both found to increase as the percentage of the foaming agent was increased from 0.5 to 1.5%. Compression stress was evaluated for two different porosity values (40% and 47%), and found to be higher for the samples with lower percent porosity at the same strain value. Effect of shape memory alloy fiber, made of nickel and titanium (NiTi), on the mechanical properties was also investigated. The compression stress was higher, in the densification region, for the samples in which NiTi was used.Aluminum foam is a light weight material with good mechanical and energy absorption properties. In this study, aluminum foam composite was fabricated using aluminum powder 6061 and silicon carbide (SiC) powder. Titanium hydride (TiH2) was used as the foaming agent. Cold compact followed by hot pressing (sintering) was used to produce the composite precursor. Foaming was carried out, following the sintering process, by heating the aluminum composite precursor to a temperature above the melting point of aluminum (Al). The linear expansion of the foam and the percent porosity were found to increase as the SiC percentage decreased from 10 to 4%, whereas the density got lower. The percent porosity and linear expansion were both found to increase as the percentage of the foaming agent was increased from 0.5 to 1.5%. Compression stress was evaluated for two different porosity values (40% and 47%), and found to be higher for the samples with lower percent porosity at the same strain value. Effect of shape memory alloy fiber, made of nickel and titanium (NiTi), on the mechanical properties was also investigated. The compression stress was higher, in the densification region, for the samples in which NiTi was used.

关 键 词:ALUMINUM Foam Composite Silicon CARBIDE TITANIUM HYDRIDE 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象