7-(2-Ethyltiophenyl) Theophylline as Copper Corrosion Inhibitor in 1M HNO<sub>3</sub>  

7-(2-Ethyltiophenyl) Theophylline as Copper Corrosion Inhibitor in 1M HNO<sub>3</sub>

在线阅读下载全文

作  者:Ouédraogo Augustin Akpa Sagne Jacques Diki N’guessan Yao Silvère Diomande Gbe Gondo Didier Coulibaly Nagnonta Hippolyte Trokourey Albert 

机构地区:[1]Laboratoire de Chimie Physique, Université Félix Houphouë t-Boigny, Abidjan, Cô te d’Ivoire [2]Laboratoire de Chimie Organique et Substances Naturelles, Université Félix Houphouë t-Boigny, Abidjan, Cô te d’Ivoire

出  处:《Journal of Materials Science and Chemical Engineering》2018年第8期31-49,共19页材料科学与化学工程(英文)

摘  要:7-(2-ethyltiophenyl) theophylline was used as copper corrosion inhibitor in 1M HNO3 solution. The study was performed using mass loss, scanning electron microscopy (SEM) and Density Functional Theory (DFT) methods. The results show that the inhibition efficiency increases up to 91.29% with increase of the inhibitor concentration (from 0.05 to 5 mM) but decreases with raising temperature of the solution. Copper dissolution was found to be temperature and 7-(2-ethyltiophenyl) theophylline concentration dependent. The thermodynamic functions related to the adsorption of the molecule on the copper surface and that of the metal dissolution were determined. The results point out a spontaneous adsorption and an endothermic dissolution processes. Adsorption models including Langmuir, El-Awady and Flory-Huggins isotherms were examined. The results also suggest spontaneous and predominant physical adsorption of 7-(2-ethyltiophenyl) theophylline on the metal surface which obeys Langmuir isotherm model. Further investigation on the morphology using scanning electron microscopy (SEM) has confirmed the existence of a protective film of inhibitor molecules on copper surface. Furthermore, the global and local reactivity parameters of the studied molecule were analyzed. Experimental and theoretical results were found to be in good agreement.7-(2-ethyltiophenyl) theophylline was used as copper corrosion inhibitor in 1M HNO3 solution. The study was performed using mass loss, scanning electron microscopy (SEM) and Density Functional Theory (DFT) methods. The results show that the inhibition efficiency increases up to 91.29% with increase of the inhibitor concentration (from 0.05 to 5 mM) but decreases with raising temperature of the solution. Copper dissolution was found to be temperature and 7-(2-ethyltiophenyl) theophylline concentration dependent. The thermodynamic functions related to the adsorption of the molecule on the copper surface and that of the metal dissolution were determined. The results point out a spontaneous adsorption and an endothermic dissolution processes. Adsorption models including Langmuir, El-Awady and Flory-Huggins isotherms were examined. The results also suggest spontaneous and predominant physical adsorption of 7-(2-ethyltiophenyl) theophylline on the metal surface which obeys Langmuir isotherm model. Further investigation on the morphology using scanning electron microscopy (SEM) has confirmed the existence of a protective film of inhibitor molecules on copper surface. Furthermore, the global and local reactivity parameters of the studied molecule were analyzed. Experimental and theoretical results were found to be in good agreement.

关 键 词:Corrosion 7-(2-Ethyltiophenyl) THEOPHYLLINE MASS LOSS SEM DFT 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象