检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Guillermina Capiel Arrosio Florencia Vera A. Alvarez Pablo E. Montemartini Juan Morán
机构地区:[1]Structural Composites (CET), INTEMA, National University of Mar del Plata, Mar del Plata, Argentina [2]Composite Materials (COMP), INTEMA, National University of Mar del Plata, Mar del Plata, Argentina
出 处:《Journal of Materials Science and Chemical Engineering》2019年第8期87-97,共11页材料科学与化学工程(英文)
摘 要:Glass fiber reinforced epoxy (GFRE) composite materials are prone to suffer from water absorption due to their heterogeneous structure. The main process governing water absorption is diffusion of water molecules through the epoxy matrix. However, hydrolytic degradation may also take place during components service life specially due high temperatures. In order to mitigate the effects of the water diffusive processes in the deterioration of in-service behavior of epoxy matrix composites, the use of chemically modified nanoclays as an additive has been proposed and studied in previous works [1]. In this work, an Artificial Neural Network (ANN) model was developed for better understanding and predicting the influence of modified and unmodified bentonite addition on the water absorption behavior of epoxy-anhydride systems. An excellent correlation between model and experimental data was found. The ANN model allowed the identification of critical points like the precise temperature at which a particular system’s water uptake goes beyond a predefined threshold, or which system will resist an immersion longer than a particular time.Glass fiber reinforced epoxy (GFRE) composite materials are prone to suffer from water absorption due to their heterogeneous structure. The main process governing water absorption is diffusion of water molecules through the epoxy matrix. However, hydrolytic degradation may also take place during components service life specially due high temperatures. In order to mitigate the effects of the water diffusive processes in the deterioration of in-service behavior of epoxy matrix composites, the use of chemically modified nanoclays as an additive has been proposed and studied in previous works [1]. In this work, an Artificial Neural Network (ANN) model was developed for better understanding and predicting the influence of modified and unmodified bentonite addition on the water absorption behavior of epoxy-anhydride systems. An excellent correlation between model and experimental data was found. The ANN model allowed the identification of critical points like the precise temperature at which a particular system’s water uptake goes beyond a predefined threshold, or which system will resist an immersion longer than a particular time.
关 键 词:Artificial Neural Networks Epoxy-Anhydride CLAY Nanocomposites Water Absorption
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15