Influence of Microstructure and Experimental Parameters on Mechanical and Wear Properties of Al-TiC Surface Composite by FSP Route  

Influence of Microstructure and Experimental Parameters on Mechanical and Wear Properties of Al-TiC Surface Composite by FSP Route

在线阅读下载全文

作  者:S. Jerome S. Govind Bhalchandra S.P. Kumaresh Babu B. Ravisankar 

机构地区:[1]Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli – 620 015, Tamilnadu, India

出  处:《Journal of Minerals and Materials Characterization and Engineering》2012年第5期493-507,共15页矿物质和材料特性和工程(英文)

摘  要:Surface properties decide the fatigue, wear and corrosion behavior of a material. Hence their performance can be improved by surface modifications. Friction Stir Processing (FSP) is a promising technique to develop surface composite. The aim of the present study is to develop defect free surface composite of Al 5083 alloy reinforced with TiC particles and investigate the particle distribution in the matrix, mechanical properties and wear behavior of the composites. Microstructural observations were carried out by using optical and scanning electron microscopy (SEM). The microstructural studies revealed that distribution of particles were more uniform in samples subjected to double pass than the single pass FSP. The microhardness profiles along top surface and across the cross section of the processed samples were evaluated. The average hardness along the top surface was found to increase by 27.27%, as compared to that of the base metal (88Hv). The particles were incorporated maximum average depth about 250μm in the surface composite. The slurry erosion tests revealed that the wear rate was highly reduced in case of double pass FSP samples as compared to base metal and single pass FSPedSurface properties decide the fatigue, wear and corrosion behavior of a material. Hence their performance can be improved by surface modifications. Friction Stir Processing (FSP) is a promising technique to develop surface composite. The aim of the present study is to develop defect free surface composite of Al 5083 alloy reinforced with TiC particles and investigate the particle distribution in the matrix, mechanical properties and wear behavior of the composites. Microstructural observations were carried out by using optical and scanning electron microscopy (SEM). The microstructural studies revealed that distribution of particles were more uniform in samples subjected to double pass than the single pass FSP. The microhardness profiles along top surface and across the cross section of the processed samples were evaluated. The average hardness along the top surface was found to increase by 27.27%, as compared to that of the base metal (88Hv). The particles were incorporated maximum average depth about 250μm in the surface composite. The slurry erosion tests revealed that the wear rate was highly reduced in case of double pass FSP samples as compared to base metal and single pass FSPed composite

关 键 词:Al- TIC surface composite FRICTION STIR processing MICROHARDNESS WEAR resistance 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象