Crosslinking as an Efficient Tool for Decreasing Moisture Sensitivity of Biobased Nanocomposite Films  被引量:3

Crosslinking as an Efficient Tool for Decreasing Moisture Sensitivity of Biobased Nanocomposite Films

在线阅读下载全文

作  者:Jari Vartiainen Ali Harlin 

机构地区:[1]不详

出  处:《Materials Sciences and Applications》2011年第5期346-354,共9页材料科学与应用期刊(英文)

摘  要:Chitosan-nanoclay bio-hybrid films were successfully crosslinked with glutaraldehyde, genipin and glyoxal. Moisture sensitivity of films decreased as a result of crosslinking which led to improved barrier properties against water vapor and oxygen. Films containing chitosan (6.6 g/m2) with genipin (3.3 g/m2) and nanoclay (6.6 g/m2) had water vapor transmission rate of 72 g × 100 μm/(m2 × 24 h) which was 34% lower as compared to pure chitosan and 30% lower as compared to chitosan/nanoclay without crosslinkers. Glyoxal induced crosslinking resulted in 92% reduction in oxygen transmission rate at 80% relative humidity as compared to pure chitosan films. Oxygen transmission through glyoxal (3.3 g/m2) treated chitosan/nanoclay film was 2.8 cm3 × 100 μm/(m2 × 24 h) which was 53% lower as compared to chitosan/nanoclay without crosslinkers. In addition, nanoclay and especially glyoxal crosslinking prevented the water vapor sorption of chitosan considerably. Crosslinking may be used as an efficient tool for enhancing the exploitability of naturally hydrophilic biopolymers towards new high-value applications, such as food packaging.Chitosan-nanoclay bio-hybrid films were successfully crosslinked with glutaraldehyde, genipin and glyoxal. Moisture sensitivity of films decreased as a result of crosslinking which led to improved barrier properties against water vapor and oxygen. Films containing chitosan (6.6 g/m2) with genipin (3.3 g/m2) and nanoclay (6.6 g/m2) had water vapor transmission rate of 72 g × 100 μm/(m2 × 24 h) which was 34% lower as compared to pure chitosan and 30% lower as compared to chitosan/nanoclay without crosslinkers. Glyoxal induced crosslinking resulted in 92% reduction in oxygen transmission rate at 80% relative humidity as compared to pure chitosan films. Oxygen transmission through glyoxal (3.3 g/m2) treated chitosan/nanoclay film was 2.8 cm3 × 100 μm/(m2 × 24 h) which was 53% lower as compared to chitosan/nanoclay without crosslinkers. In addition, nanoclay and especially glyoxal crosslinking prevented the water vapor sorption of chitosan considerably. Crosslinking may be used as an efficient tool for enhancing the exploitability of naturally hydrophilic biopolymers towards new high-value applications, such as food packaging.

关 键 词:Chitosan NANOCLAY CROSSLINKING Barrier Packaging GLUTARALDEHYDE GENIPIN GLYOXAL 

分 类 号:O6[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象