A Novel Low Temperature Synthesis of KNN Nanoparticles by Facile Wet Chemical Method  

A Novel Low Temperature Synthesis of KNN Nanoparticles by Facile Wet Chemical Method

在线阅读下载全文

作  者:Rashmi Rani Seema Sharma Marzia Quaglio Radheshyam Rai Stefano Bianco Diego Pugliese Candido Fabrizio Pirri 

机构地区:[1]Ferroelectric Research Laboratory, Department of Physics, A. N. College, Patna, India [2]Center for Space Human Robotics (CSHR), Instituto Italiano di Tecnologia (IIT), Torino, Italy [3]Department of Applied Science and Technology (DISAT), Politecnico di Torino, Torino, Italy [4]School of Physics and Materials Science, Shoolini University, Solan, India

出  处:《Materials Sciences and Applications》2017年第3期247-257,共11页材料科学与应用期刊(英文)

摘  要:Sodium potassium niobate (KNN) (K0.5Na0.5NbO3) nanopowder with a mean particle size of about 20 - 30 nm was synthesized by wet chemical route using Nb2O5 as Nb source. A solution of K, Na and Nb cations was prepared, which resulted in a clear gel after the thermal treatment. Phase analysis, microstructure and morphology of the powder were determined by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FESEM). The obtained gel was first analyzed by Thermo Gravimetric Analyzer (TGA) and Differential Scanning Calorimetry (DSC), and then calcined at different temperatures of 400℃, 500℃, 600℃ and 700℃. The X-Ray Diffraction (XRD) patterns of the synthesized samples confirmed the formation of the orthorhombic crystal phase of K0.5Na0.5NbO3 at 500?C, a temperature significantly lower than that typically used in the conventional mixed oxide route. The process developed in this work is convenient to realize the mass production of KNN nanopowders at low cost and suitable for various industrial applications.Sodium potassium niobate (KNN) (K0.5Na0.5NbO3) nanopowder with a mean particle size of about 20 - 30 nm was synthesized by wet chemical route using Nb2O5 as Nb source. A solution of K, Na and Nb cations was prepared, which resulted in a clear gel after the thermal treatment. Phase analysis, microstructure and morphology of the powder were determined by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FESEM). The obtained gel was first analyzed by Thermo Gravimetric Analyzer (TGA) and Differential Scanning Calorimetry (DSC), and then calcined at different temperatures of 400℃, 500℃, 600℃ and 700℃. The X-Ray Diffraction (XRD) patterns of the synthesized samples confirmed the formation of the orthorhombic crystal phase of K0.5Na0.5NbO3 at 500?C, a temperature significantly lower than that typically used in the conventional mixed oxide route. The process developed in this work is convenient to realize the mass production of KNN nanopowders at low cost and suitable for various industrial applications.

关 键 词:KNN NANO-POWDER SOL-GEL Method PEROVSKITE Phase Low Temperature SINTERING Ceramic Processing 

分 类 号:O6[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象