检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ibrahim Reda Afshin Andreas Mike Dooraghi Manajit Sengupta Aron Habte Mark Kutchenreiter
机构地区:[1]National Renewable Energy Laboratory, Golden, USA
出 处:《Atmospheric and Climate Sciences》2017年第1期36-47,共12页大气和气候科学(英文)
摘 要:Shortwave radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to consensus reference, maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window that measures the extended broadband spectrum of the terrestrial direct solar beam irradiance, unlike shortwave radiometers that cover a limited range of the spectrum. The difference between the two spectral ranges may lead to calibration bias that can exceed 1%. This article describes a method to reduce the calibration bias resulting from using broadband ACRs to calibrate shortwave radiometers by using an ACR with Schott glass window to measure the reference broadband shortwave irradiance in the terrestrial direct solar beam from 0.3 μm to 3 μm. Reducing the calibration bias will result in lowering the historical solar irradiance by at least 0.9%. The published results in this article might raise the awareness of the calibration discrepancy to the users of such radiometers, and open a discussion within the solar and atmospheric science community to define their expectation from such radiometers to the radiometers’ manufacturers and calibration providers.Shortwave radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to consensus reference, maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window that measures the extended broadband spectrum of the terrestrial direct solar beam irradiance, unlike shortwave radiometers that cover a limited range of the spectrum. The difference between the two spectral ranges may lead to calibration bias that can exceed 1%. This article describes a method to reduce the calibration bias resulting from using broadband ACRs to calibrate shortwave radiometers by using an ACR with Schott glass window to measure the reference broadband shortwave irradiance in the terrestrial direct solar beam from 0.3 μm to 3 μm. Reducing the calibration bias will result in lowering the historical solar irradiance by at least 0.9%. The published results in this article might raise the awareness of the calibration discrepancy to the users of such radiometers, and open a discussion within the solar and atmospheric science community to define their expectation from such radiometers to the radiometers’ manufacturers and calibration providers.
关 键 词:PYRANOMETER Pyrheliometer CALIBRATION ABSOLUTE Cavity Pyrheliometer Photovoltaic Cells Shortwave
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.228.99