Coagulation Mechanisms during the Substitution of Inorganic Salts with Cationic Polymers to Increase the Sludge Value  

Coagulation Mechanisms during the Substitution of Inorganic Salts with Cationic Polymers to Increase the Sludge Value

在线阅读下载全文

作  者:Lelum Duminda Manamperuma Harsha Chandima Ratnaweera 

机构地区:[1]Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Aas, Norway

出  处:《Journal of Water Resource and Protection》2015年第17期1495-1501,共7页水资源与保护(英文)

摘  要:Phosphorus in wastewater sludge is a valuable resource although coagulated sludge reported to give only 10% of plant availability of phosphates. Since all Al and Fe added as coagulants end up in sludge, the potential to substitute them with cationic coagulants was studied. During combined coagulation, substitution possibilities up to 44% were observed with low coagulant-to-particle ratio where the adsorption-charge neutralisation (ACN) anticipated being the predominant mechanism. Comparatively high coagulant-to-particle ratio preferred Sweep-floc mechanism giving <20% substitution possibilities, though even lower values anticipated at higher phosphate removals. The cationic polymers’ ability to compete with positively charged Al- and Fe-hydrolysis products was argued as the explanation for higher substitution possibilities during ACN mechanism. Sub-stitutions can be enhanced with dual coagulation with intermediate sludge separation by avoiding competition between two coagulants.Phosphorus in wastewater sludge is a valuable resource although coagulated sludge reported to give only 10% of plant availability of phosphates. Since all Al and Fe added as coagulants end up in sludge, the potential to substitute them with cationic coagulants was studied. During combined coagulation, substitution possibilities up to 44% were observed with low coagulant-to-particle ratio where the adsorption-charge neutralisation (ACN) anticipated being the predominant mechanism. Comparatively high coagulant-to-particle ratio preferred Sweep-floc mechanism giving <20% substitution possibilities, though even lower values anticipated at higher phosphate removals. The cationic polymers’ ability to compete with positively charged Al- and Fe-hydrolysis products was argued as the explanation for higher substitution possibilities during ACN mechanism. Sub-stitutions can be enhanced with dual coagulation with intermediate sludge separation by avoiding competition between two coagulants.

关 键 词:Organic Polymers INORGANIC COAGULANTS Plant Availability of PHOSPHORUS PHOSPHORUS Removal COAGULATION Mechanisms 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象