检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Katherine Miller Katherine Folk Clancy
机构地区:[1]College of Natural Resources, University of Wisconsin at Stevens Point, Stevens Point, USA
出 处:《Journal of Water Resource and Protection》2017年第1期20-39,共20页水资源与保护(英文)
摘 要:Runoff models such as the Curve Number (CN) model are dependent upon land use and soil type within the watershed or contributing area. In regions with internal drainage (e.g. wetlands) watershed delineation methods that fill sinks can result in inaccurate contributing areas and estimations of runoff from models such as the CN model. Two methods to account for this inaccuracy have been 1) to adjust the initial abstraction value within the CN model;or 2) to improve the watershed delineation in order to better account for internal drainage. We used a combined approach of examining the watershed delineation, and refining the CN model by the incorporating of dual hydrologic soil classifications. For eighteen watersheds within Wisconsin, we compared the CN model results of three watershed delineation methods to USGS gaged values. We found that for large precipitation events (>100 mm) the CN model estimations are closer to observed values for watershed delineations that identify the directly connected watershed and use the undrained hydrologic soil classification.Runoff models such as the Curve Number (CN) model are dependent upon land use and soil type within the watershed or contributing area. In regions with internal drainage (e.g. wetlands) watershed delineation methods that fill sinks can result in inaccurate contributing areas and estimations of runoff from models such as the CN model. Two methods to account for this inaccuracy have been 1) to adjust the initial abstraction value within the CN model;or 2) to improve the watershed delineation in order to better account for internal drainage. We used a combined approach of examining the watershed delineation, and refining the CN model by the incorporating of dual hydrologic soil classifications. For eighteen watersheds within Wisconsin, we compared the CN model results of three watershed delineation methods to USGS gaged values. We found that for large precipitation events (>100 mm) the CN model estimations are closer to observed values for watershed delineations that identify the directly connected watershed and use the undrained hydrologic soil classification.
关 键 词:CURVE NUMBER WATERSHED DELINEATION RUNOFF
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49