机构地区:[1]Department of Geosciences and Environment, Université Jean Lorougnon Guédé (UJLoG), Daloa, Cô,te d’Ivoire [2]Department of Rural Engineering and Geographical Sciences, Institut National Polytechnique Félix Houphouë,t-Boigny (INP-HB), Yamoussoukro, Cô,te d’Ivoire [3]Department of Chemical and Food Engineering, Institut National Polytechnique Félix Houphouë,t-Boigny (INP-HB), Yamoussoukro, Cô,te d’Ivoire
出 处:《Journal of Water Resource and Protection》2023年第10期539-556,共18页水资源与保护(英文)
摘 要:In this study, the SEBAL (Surface Energy Balance Algorithm for Land) model was used to map the spatio-temporal distribution of actual evapotranspiration in the Yamoussoukro department (Côte d’Ivoire). Like other regions of the country, the Yamoussoukro district is confronted with the phenomenon of evapotranspiration (ET). This is a very important component that comes into play in the water balance but also in the calculation of the water needs of agricultural crops. Consequently, its estimation is of paramount importance in research related to the rational management of water resources, particularly agricultural water. The objective of this study was to analyze the spatio-temporal distribution of actual evapotranspiration (AET) as a function of land cover and land use. The methodology used is based on the SEBAL model which uses remote sensing (Landsat 8_OLI/TIRS) and climatic data to estimate actual evapotranspiration and analyze the spatio-temporal distribution of AET. The results reveal that the AET varied from 0 to 5.44 mm/day over the period from December 2019 to February 2020 with an average value of 4.92 mm/day. The highest average values occurred for water bodies (4.90 mm/day) and flooded vegetation (4.88 mm/day) while the lowest values occurred in residential areas (2.04 mm/day). Furthermore, the results show that the difference between the SEBAL model and the FAO-Penman-Monteith method is minimal with an average RMSE of 0.36 mm/day for all the satellite images. This study demonstrates the considerable potential of remote sensing for the characterization and estimation of spatial evapotranspiration in the Zatta irrigated rice-growing area.In this study, the SEBAL (Surface Energy Balance Algorithm for Land) model was used to map the spatio-temporal distribution of actual evapotranspiration in the Yamoussoukro department (Côte d’Ivoire). Like other regions of the country, the Yamoussoukro district is confronted with the phenomenon of evapotranspiration (ET). This is a very important component that comes into play in the water balance but also in the calculation of the water needs of agricultural crops. Consequently, its estimation is of paramount importance in research related to the rational management of water resources, particularly agricultural water. The objective of this study was to analyze the spatio-temporal distribution of actual evapotranspiration (AET) as a function of land cover and land use. The methodology used is based on the SEBAL model which uses remote sensing (Landsat 8_OLI/TIRS) and climatic data to estimate actual evapotranspiration and analyze the spatio-temporal distribution of AET. The results reveal that the AET varied from 0 to 5.44 mm/day over the period from December 2019 to February 2020 with an average value of 4.92 mm/day. The highest average values occurred for water bodies (4.90 mm/day) and flooded vegetation (4.88 mm/day) while the lowest values occurred in residential areas (2.04 mm/day). Furthermore, the results show that the difference between the SEBAL model and the FAO-Penman-Monteith method is minimal with an average RMSE of 0.36 mm/day for all the satellite images. This study demonstrates the considerable potential of remote sensing for the characterization and estimation of spatial evapotranspiration in the Zatta irrigated rice-growing area.
关 键 词:EVAPOTRANSPIRATION Water Balance Rational Management Remote Sensing SEBAL Model
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...