检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Hesham El-Badry
机构地区:[1]Irrigation and Hydraulics Department, Ain Shams University, Cairo, Egypt Resources and Environment Department, Dar Al-Handasah (Shair and Partners), Cairo, Egypt
出 处:《Natural Resources》2013年第1期82-91,共10页自然资源(英文)
摘 要:A steady state optimization model used to define the optimum salt to carnallite ponds area ratio in a solar pond system was developed. The model is based on material balance analysis using a cascade of complete-mix reactors model (cascade of CFSTR, continuous-flow stirred-tank reactor) prepared for the solar pond system. The basic material balance model shall use the basic phase chemistry relations and physical parameters of the solar pond system under optimization. The Arab Potash solar pond system data was used to examine the developed model where the Arab potash solar system was used as a Case Study. In the course of the model development, calibration and validation of the model is performed. Using this steady state model the optimum salt pond to carnallite pond area ratio is deduced. This optimum ratio is defined as the optimum area ratio that maximizes the carnallite production per the total pond system area. This term, which could be expressed as tons per km2, presents the best pond system efficiency. The results show that a 1.88 ratio of salt to carnallite ponds area is the optimum ratio.A steady state optimization model used to define the optimum salt to carnallite ponds area ratio in a solar pond system was developed. The model is based on material balance analysis using a cascade of complete-mix reactors model (cascade of CFSTR, continuous-flow stirred-tank reactor) prepared for the solar pond system. The basic material balance model shall use the basic phase chemistry relations and physical parameters of the solar pond system under optimization. The Arab Potash solar pond system data was used to examine the developed model where the Arab potash solar system was used as a Case Study. In the course of the model development, calibration and validation of the model is performed. Using this steady state model the optimum salt pond to carnallite pond area ratio is deduced. This optimum ratio is defined as the optimum area ratio that maximizes the carnallite production per the total pond system area. This term, which could be expressed as tons per km2, presents the best pond system efficiency. The results show that a 1.88 ratio of salt to carnallite ponds area is the optimum ratio.
关 键 词:SOLAR POND SOLAR EVAPORATION CARNALLITE Production Phase CHEMISTRY
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145