Generating Tree-Lists by Fusing Individual Tree Detection and Nearest Neighbor Imputation Using Airborne LiDAR Data  

Generating Tree-Lists by Fusing Individual Tree Detection and Nearest Neighbor Imputation Using Airborne LiDAR Data

在线阅读下载全文

作  者:Joonghoon Shin Hailemariam Temesgen 

机构地区:[1]Department of Forest Engineering, Resources and Management, Oregon State University, Peavy Hall, Corvallis, OR, USA

出  处:《Open Journal of Forestry》2018年第4期500-531,共32页林学期刊(英文)

摘  要:Individual tree detection (ITD) and the area-based approach (ABA) are combined to generate tree-lists using airborne LiDAR data. ITD based on the Canopy Height Model (CHM) was applied for overstory trees, while ABA based on nearest neighbor (NN) imputation was applied for understory trees. Our approach is intended to compensate for the weakness of LiDAR data and ITD in estimating understory trees, keeping the strength of ITD in estimating overstory trees in tree-level. We investigated the effects of three parameters on the performance of our proposed approach: smoothing of CHM, resolution of CHM, and height cutoff (a specific height that classifies trees into overstory and understory). There was no single combination of those parameters that produced the best performance for estimating stems per ha, mean tree height, basal area, diameter distribution and height distribution. The trees in the lowest LiDAR height class yielded the largest relative bias and relative root mean squared error. Although ITD and ABA showed limited explanatory powers to estimate stems per hectare and basal area, there could be improvements from methods such as using LiDAR data with higher density, applying better algorithms for ITD and decreasing distortion of the structure of LiDAR data. Automating the procedure of finding optimal combinations of those parameters is essential to expedite forest management decisions across forest landscapes using remote sensing data.Individual tree detection (ITD) and the area-based approach (ABA) are combined to generate tree-lists using airborne LiDAR data. ITD based on the Canopy Height Model (CHM) was applied for overstory trees, while ABA based on nearest neighbor (NN) imputation was applied for understory trees. Our approach is intended to compensate for the weakness of LiDAR data and ITD in estimating understory trees, keeping the strength of ITD in estimating overstory trees in tree-level. We investigated the effects of three parameters on the performance of our proposed approach: smoothing of CHM, resolution of CHM, and height cutoff (a specific height that classifies trees into overstory and understory). There was no single combination of those parameters that produced the best performance for estimating stems per ha, mean tree height, basal area, diameter distribution and height distribution. The trees in the lowest LiDAR height class yielded the largest relative bias and relative root mean squared error. Although ITD and ABA showed limited explanatory powers to estimate stems per hectare and basal area, there could be improvements from methods such as using LiDAR data with higher density, applying better algorithms for ITD and decreasing distortion of the structure of LiDAR data. Automating the procedure of finding optimal combinations of those parameters is essential to expedite forest management decisions across forest landscapes using remote sensing data.

关 键 词:Tree-List Generation Individual TREE DETECTION Nearest NEIGHBOR IMPUTATION Parameter Sensitivity AIRBORNE LiDAR 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象