机构地区:[1]Department of Hydraulic and Water Resources Engineering, Budapest University of Technology and Economics, Budapest, Hun- gary 2School of Natural Resources, University of Nebraska-Lincoln, Lincoln, USA.
出 处:《Open Journal of Modern Hydrology》2013年第4期172-178,共7页现代水文学期刊(英文)
摘 要:Daily and monthly flow-rates of the Little Nemaha River in Nebraska were simulated by the lumped-parameter Jakeman-Hornberger as well as a distributed-parameter water-balance accounting procedure for the 2003-2008 and 2000-2009 periods, respectively, with and without the help of the MODIS-based monthly estimates of evapotranspiration (ET) rates. While the daily lumped-parameter model simulation accuracy remained practically unchanged with the inclusion of the monthly MODIS-based ET rates interpolated into daily values (R2 of 0.66 vs 0.68, simulated to measured runoff ratio remaining the same 96%), the monthly water-balance accounting model outcomes did improve to some extent (from an R2 of 0.67 to 0.7 with simulated to measured runoff ratio of 72% vs 115%). In both cases the models had to be slightly modified for accommodation of the ET rates as predefined input values, not present in the original model setups. These results indicate the potential practical usefulness of satellite-derived ET estimates (CREMAP values in the present case) in monthly water-balance modeling. CREMAP is a calibration-free ET estimation method based on MODIS-derived daytime surface temperature values in combination of basic climatic variables, such as air temperature, humidity and solar radiation within a Complementary Relationship framework of evaporation.Daily and monthly flow-rates of the Little Nemaha River in Nebraska were simulated by the lumped-parameter Jakeman-Hornberger as well as a distributed-parameter water-balance accounting procedure for the 2003-2008 and 2000-2009 periods, respectively, with and without the help of the MODIS-based monthly estimates of evapotranspiration (ET) rates. While the daily lumped-parameter model simulation accuracy remained practically unchanged with the inclusion of the monthly MODIS-based ET rates interpolated into daily values (R2 of 0.66 vs 0.68, simulated to measured runoff ratio remaining the same 96%), the monthly water-balance accounting model outcomes did improve to some extent (from an R2 of 0.67 to 0.7 with simulated to measured runoff ratio of 72% vs 115%). In both cases the models had to be slightly modified for accommodation of the ET rates as predefined input values, not present in the original model setups. These results indicate the potential practical usefulness of satellite-derived ET estimates (CREMAP values in the present case) in monthly water-balance modeling. CREMAP is a calibration-free ET estimation method based on MODIS-derived daytime surface temperature values in combination of basic climatic variables, such as air temperature, humidity and solar radiation within a Complementary Relationship framework of evaporation.
关 键 词:Remotely Sensed EVAPOTRANSPIRATION COMPLEMENTARY RELATIONSHIP RUNOFF Modeling
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...