Enhanced Bilinear Approach for Sensor Network Self-Localization Using Noisy TOF Measurements  

Enhanced Bilinear Approach for Sensor Network Self-Localization Using Noisy TOF Measurements

在线阅读下载全文

作  者:Xue Gao Le Yang Li Peng 

机构地区:[1]School of Internet of Things (IoT) Engineering, Jiangnan University, Wuxi, China

出  处:《Journal of Computer and Communications》2014年第7期23-28,共6页电脑和通信(英文)

摘  要:This paper develops a new algorithm for sensor network self-localization, which is an enhanced version of the existing Crocco’s method in [11]. The algorithm explores the noisy time of flight (TOF) measurements that quantify the distances between sensor nodes to be localized and sources also at unknown positions. The newly proposed technique first obtains rough estimates of the sensor node and source positions, and then it refines the estimates via a least squares estimator (LSE). The LSE takes into account the geometrical constraints introduced by the desired global coordinate system to improve performance. Simulations show that the new technique offers superior localization accuracy over the original Crocco’s algorithm under small measurement noise condition.This paper develops a new algorithm for sensor network self-localization, which is an enhanced version of the existing Crocco’s method in [11]. The algorithm explores the noisy time of flight (TOF) measurements that quantify the distances between sensor nodes to be localized and sources also at unknown positions. The newly proposed technique first obtains rough estimates of the sensor node and source positions, and then it refines the estimates via a least squares estimator (LSE). The LSE takes into account the geometrical constraints introduced by the desired global coordinate system to improve performance. Simulations show that the new technique offers superior localization accuracy over the original Crocco’s algorithm under small measurement noise condition.

关 键 词:SELF-LOCALIZATION Time of Flight (TOF) Global COORDINATE System Least SQUARES Estimation 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象