Study on the Recommended Model Based on Personal Information System  

Study on the Recommended Model Based on Personal Information System

在线阅读下载全文

作  者:Xiaoyu Dai 

机构地区:[1]Computer Science & Statistics, Letters & Science, University of California, Berkeley, Berkeley, CA, US

出  处:《Journal of Computer and Communications》2018年第10期40-51,共12页电脑和通信(英文)

摘  要:This paper classifies the scenario elements which affect the real-time information needs of mobile commerce users, and proposes a nomination model that integrates the user’s personalized context elements. In this model, the top K scenarios that have the greatest impact on each user’s instant information demands are calculated from the user’s current scenario and historical data, thereby constructing a user personalized situation and improving it as an input condition that existing scenario-based multi-dimensional information recommendation algorithm is used for project nomination. Result/Conclusion: The improved algorithm and other three algorithms were compared by Movie lens and MBook Crossing dataset. The experimental results show that the model has higher prediction accuracy and can effectively improve user satisfaction and more effectively and solve personalized nomination issues in a mobile commerce environment.This paper classifies the scenario elements which affect the real-time information needs of mobile commerce users, and proposes a nomination model that integrates the user’s personalized context elements. In this model, the top K scenarios that have the greatest impact on each user’s instant information demands are calculated from the user’s current scenario and historical data, thereby constructing a user personalized situation and improving it as an input condition that existing scenario-based multi-dimensional information recommendation algorithm is used for project nomination. Result/Conclusion: The improved algorithm and other three algorithms were compared by Movie lens and MBook Crossing dataset. The experimental results show that the model has higher prediction accuracy and can effectively improve user satisfaction and more effectively and solve personalized nomination issues in a mobile commerce environment.

关 键 词:PERSONALIZED MODEL MODERN E-COMMERCE MODEL Investigation 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象