检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhiyuan Ren Chen Xing Zhiyuan Ren;Chen Xing(School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China)
出 处:《Journal of Computer and Communications》2023年第5期16-28,共13页电脑和通信(英文)
摘 要:Computer-aided diagnostic systems can assist doctors in diagnosing and treating DR cases more effectively, thereby improving work efficiency, reducing the burden on doctors during examinations, and alleviating problems related to uneven distribution of medical resources and shortage of doctors. In this article, we propose a classification method for diabetic retinopathy based on a bilinear multi-attention network. This method uses two backbone networks to extract features, and cross-shares the features using two attention modules to further deepen feature extraction. The non-local attention module is added to address the limitations of traditional convolutional neural networks in capturing global information. By paying attention to highly correlated pathological areas globally, performance improvement can be achieved. We achieved an accuracy of 91.7% on the Messidor dataset.Computer-aided diagnostic systems can assist doctors in diagnosing and treating DR cases more effectively, thereby improving work efficiency, reducing the burden on doctors during examinations, and alleviating problems related to uneven distribution of medical resources and shortage of doctors. In this article, we propose a classification method for diabetic retinopathy based on a bilinear multi-attention network. This method uses two backbone networks to extract features, and cross-shares the features using two attention modules to further deepen feature extraction. The non-local attention module is added to address the limitations of traditional convolutional neural networks in capturing global information. By paying attention to highly correlated pathological areas globally, performance improvement can be achieved. We achieved an accuracy of 91.7% on the Messidor dataset.
关 键 词:Diabetic Retinopathy Deep Neural Network STYLING Deep Neural Network
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.53.120