检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:John Babu Sridevi Rangu Pradyusha Manogna
机构地区:[1]Department of CSE, Sreekavitha Engineering College, Khammam, India [2]Department of CSE, JNTUH College of Engineering, Hyderabad, India [3]Department of CSE, Vijaya Engineering College, Khammam, India
出 处:《Journal of Information Security》2017年第3期186-202,共17页信息安全(英文)
摘 要:Steganography is the process of hiding data into public digital medium for secret communication. The image in which the secret data is hidden is termed as stego image. The detection of hidden embedded data in the image is the foundation for blind image steganalysis. The appropriate selection of cover file type and composition contribute to the successful embedding. A large number of steganalysis techniques are available for the detection of steganography in the image. The performance of the steganalysis technique depends on the ability to extract the discriminative features for the identification of statistical changes in the image due to the embedded data. The issue encountered in the blind image steganography is the non-availability of knowledge about the applied steganography techniques in the images. This paper surveys various steganalysis methods, different filtering based preprocessing methods, feature extraction methods, and machine learning based classification methods, for the proper identification of steganography in the image.Steganography is the process of hiding data into public digital medium for secret communication. The image in which the secret data is hidden is termed as stego image. The detection of hidden embedded data in the image is the foundation for blind image steganalysis. The appropriate selection of cover file type and composition contribute to the successful embedding. A large number of steganalysis techniques are available for the detection of steganography in the image. The performance of the steganalysis technique depends on the ability to extract the discriminative features for the identification of statistical changes in the image due to the embedded data. The issue encountered in the blind image steganography is the non-availability of knowledge about the applied steganography techniques in the images. This paper surveys various steganalysis methods, different filtering based preprocessing methods, feature extraction methods, and machine learning based classification methods, for the proper identification of steganography in the image.
关 键 词:STEGANALYSIS STEGANOGRAPHY FEATURE EXTRACTION Classification
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.68