Identification of Noisy Utterance Speech Signal using GA-Based Optimized 2D-MFCC Method and a Bispectrum Analysis  

Identification of Noisy Utterance Speech Signal using GA-Based Optimized 2D-MFCC Method and a Bispectrum Analysis

在线阅读下载全文

作  者:Benyamin Kusumoputro Agus Buono Li Na 

机构地区:[1]Department of Computer Science, Bogor Agricultural University, Bogor, Indonesia [2]Department of Computer Science, Tarumanagara University, Jakarta, Indonesia [3]Department of Electrical Engineering, Universitas Indonesia, Jakarta, Indonesia

出  处:《Journal of Software Engineering and Applications》2012年第12期193-199,共7页软件工程与应用(英文)

摘  要:One-dimensional Mel-Frequency Cepstrum Coefficients (1D-MFCC) in conjunction with a power spectrum analysis method is usually used as a feature extraction in a speaker identification system. However, as this one dimensional feature extraction subsystem shows low recognition rate for identifying an utterance speech signal under harsh noise conditions, we have developed a speaker identification system based on two-dimensional Bispectrum data that was theoretically more robust to the addition of Gaussian noise. As the processing sequence of ID-MFCC method could not be directly used for processing the two-dimensional Bispectrum data, in this paper we proposed a 2D-MFCC method as an extension of the 1D-MFCC method and the optimization of the 2D filter design using Genetic Algorithms. By using the 2D-MFCC method with the Bispectrum analysis method as the feature extraction technique, we then used Hidden Markov Model as the pattern classifier. In this paper, we have experimentally shows our developed methods for identifying an utterance speech signal buried with various levels of noise. Experimental result shows that the 2D-MFCC method without GA optimization has a comparable high recognition rate with that of 1D-MFCC method for utterance signal without noise addition. However, when the utterance signal is buried with Gaussian noises, the developed 2D-MFCC shows higher recognition capability, especially, when the 2D-MFCC optimized by Genetics Algorithms is utilized.One-dimensional Mel-Frequency Cepstrum Coefficients (1D-MFCC) in conjunction with a power spectrum analysis method is usually used as a feature extraction in a speaker identification system. However, as this one dimensional feature extraction subsystem shows low recognition rate for identifying an utterance speech signal under harsh noise conditions, we have developed a speaker identification system based on two-dimensional Bispectrum data that was theoretically more robust to the addition of Gaussian noise. As the processing sequence of ID-MFCC method could not be directly used for processing the two-dimensional Bispectrum data, in this paper we proposed a 2D-MFCC method as an extension of the 1D-MFCC method and the optimization of the 2D filter design using Genetic Algorithms. By using the 2D-MFCC method with the Bispectrum analysis method as the feature extraction technique, we then used Hidden Markov Model as the pattern classifier. In this paper, we have experimentally shows our developed methods for identifying an utterance speech signal buried with various levels of noise. Experimental result shows that the 2D-MFCC method without GA optimization has a comparable high recognition rate with that of 1D-MFCC method for utterance signal without noise addition. However, when the utterance signal is buried with Gaussian noises, the developed 2D-MFCC shows higher recognition capability, especially, when the 2D-MFCC optimized by Genetics Algorithms is utilized.

关 键 词:2D Mel-Frequency CEPSTRUM COEFFICIENTS BISPECTRUM Hidden Markov Model GENETICS Algorithms 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象