检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Dawn Iacobucci Rebecca McBride Deidre L. Popovich Maria Rouziou
机构地区:[1]Vanderbilt University, Nashville, TN, USA [2]Finance and Administration Development, Deloitte, New York, NY, USA [3]Texas Tech University, Lubbock, TX, USA
出 处:《Social Networking》2018年第4期220-242,共23页社交网络(英文)
摘 要:This research uses random networks as benchmarks for inferential tests of network structures. Specifically, we develop formulas for expected values and confidence intervals for four frequently employed social network centrality indices. The first study begins with analyses of stylized networks, which are then perturbed with increasing levels of random noise. When the indices achieve their values for fully random networks, the indices reveal systematic relationships that generalize across network forms. The second study then delves into the relationships between numbers of actors in a network and the density of a network for each of the centrality indices. In doing so, expected values are easily calculated, which in turn enable chi-square tests of network structure. Furthermore, confidence intervals are developed to facilitate a network analyst’s understanding as to which patterns in the data are merely random, versus which are structurally significantly distinct.This research uses random networks as benchmarks for inferential tests of network structures. Specifically, we develop formulas for expected values and confidence intervals for four frequently employed social network centrality indices. The first study begins with analyses of stylized networks, which are then perturbed with increasing levels of random noise. When the indices achieve their values for fully random networks, the indices reveal systematic relationships that generalize across network forms. The second study then delves into the relationships between numbers of actors in a network and the density of a network for each of the centrality indices. In doing so, expected values are easily calculated, which in turn enable chi-square tests of network structure. Furthermore, confidence intervals are developed to facilitate a network analyst’s understanding as to which patterns in the data are merely random, versus which are structurally significantly distinct.
关 键 词:CENTRALITY Degree CLOSENESS BETWEENNESS EIGENVECTOR CENTRALITY SOCIAL Networks
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.68.255