国家自然科学基金(BK2009727)

作品数:1被引量:2H指数:1
导出分析报告
相关期刊:《Chinese Physics B》更多>>
相关主题:FAILURESAPPROXIMATIONRANDOMRADIOACTIVITYPREDICTION更多>>
相关领域:理学更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-1
视图:
排序:
Generalized unscented Kalman filtering based radial basis function neural network for the prediction of ground radioactivity time series with missing data被引量:2
《Chinese Physics B》2011年第6期546-551,共6页伍雪冬 王耀南 刘维亭 朱志宇 
Project supported by the State Key Program of the National Natural Science of China (Grant No. 60835004);the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2009727);the Natural Science Foundation of Higher Education Institutions of Jiangsu Province of China (Grant No. 10KJB510004);the National Natural Science Foundation of China (Grant No. 61075028)
On the assumption that random interruptions in the observation process are modeled by a sequence of independent Bernoulli random variables, we firstly generalize two kinds of nonlinear filtering methods with random in...
关键词:prediction of time series with missing data random interruption failures in the observation neural network approximation 
检索报告 对象比较 聚类工具 使用帮助 返回顶部