国家自然科学基金(10501046)

作品数:2被引量:1H指数:1
导出分析报告
相关期刊:《Science China Mathematics》更多>>
相关主题:LEMMAPRINCIPLEPACKINGEXTREMALHYPERBOLIC更多>>
相关领域:自然科学总论更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-2
视图:
排序:
Schwarz’s lemma for the circle packings with the general combinatorics被引量:1
《Science China Mathematics》2010年第2期277-290,共14页XiaoJun Huang JinSong Liu Liang Shen 
supported by National Natural Science Foundation of China (Grant Nos.10701084, 10501046);the Natural Science Foundation of Chongqing, China (Grant No. CSTC2008BB0151)
Rodin (1987) proved the Schwarz’s lemma analog for the circle packings based on the hexagonal combinatorics. In this paper, we prove the Schwarz’s lemma for the circle packings with the general combinatorics and our...
关键词:circle PACKING discrete EXTREMAL length the maximum PRINCIPLE HYPERBOLIC geometry 
An extremality property of Jenkins-Strebel differentials
《Science China Mathematics》2006年第8期1094-1102,共9页LIU Jinsong 
This work was partially supported by the National Natural Science Foundation of China (Grant No. 10501046).
Given a compact Riemann surface S with finitely many punctures, in this paper we obtain a new extremality property of a Jenkins-Strebel differentialψon S. As a consequence, we obtain the solutions of several kinds of...
关键词:Jenkins-Strebel differentials  EXTREMALITY property  moduli. 
检索报告 对象比较 聚类工具 使用帮助 返回顶部