《Advances in Applied Mathematics and Mechanics》

作品数:600被引量:195H指数:4
导出分析报告
《Advances in Applied Mathematics and Mechanics》
主办单位:湘潭大学
最新期次:2024年1期更多>>
发文主题:LATTICE_BOLTZMANN_METHODMETHODFINITE_ELEMENT_METHODNONLINEARSOLVING更多>>
发文领域:理学自动化与计算机技术金属学及工艺医药卫生更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划国家教育部博士点基金中国博士后科学基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
A Hessian Recovery Based Linear Finite Element Method for Molecular Beam Epitaxy Growth Model with Slope Selection
《Advances in Applied Mathematics and Mechanics》2024年第1期1-23,共23页Minqiang Xu Qingsong Zou 
supported by General Scientific Research Projects of Zhejiang Education Department(No.Y202147013);the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-Sen University(No.2021008);supported in part by NSFC Grant(No.12071496);Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University(No.2020B1212060032)。
In this paper,we present a Hessian recovery based linear finite element method to simulate the molecular beam epitaxy growth model with slope selection.For the time discretization,we apply a first-order convex splitti...
关键词:Molecular beam epitaxy Hessian recovery linear finite element method superconvergence. 
A Nitsche-Based Element-Free Galerkin Method for Semilinear Elliptic Problems
《Advances in Applied Mathematics and Mechanics》2024年第1期24-46,共23页Tao Zhang Xiaolin Li 
supported by the Innovation Research Group Project in Universities of Chongqing of China(No.CXQT19018);the National Natural Science Foundation of China(Grant No.11971085);he Natural Science Foundation of Chongqing(Grant Nos.cstc2021jcyj-jqX0011 and cstc2020jcyj-msxm0777);an open project of Key Laboratory for Optimization and Control Ministry of Education,Chongqing Normal University(Grant No.CSSXKFKTM202006)。
A Nitsche-based element-free Galerkin(EFG)method for solving semilinear elliptic problems is developed and analyzed in this paper.The existence and uniqueness of the weak solution for semilinear elliptic problems are ...
关键词:Meshless method element-free Galerkin method Nitsche method semilinear elliptic problem error estimate 
A High-Order Localized Artificial Diffusivity Scheme for Discontinuity Capturing on 1D Drift-Flux Models for Gas-Liquid Flows
《Advances in Applied Mathematics and Mechanics》2024年第1期47-74,共28页Adyllyson H.Nascimento Eugenio S.Rosa 
CAPES-National Council for the Improvement of Higher Education(Grant No.88882.435210/2019-01).
A computational code is developed for the numerical solution of onedimensional transient gas-liquid flows using drift-flux models,in isothermal and also with phase change situations.For these two-phase models,classica...
关键词:Compressible two-phase flows drift-flux model localized artificial diffusivity highorder numerical methods 
DPK:Deep Neural Network Approximation of the First Piola-Kirchhoff Stress
《Advances in Applied Mathematics and Mechanics》2024年第1期75-100,共26页Tianyi Hu Jerry Zhijian Yang Cheng Yuan 
supported by the National Key Research and Development Program of China(No.2020YFA0714200);the National Nature Science Foundation of China(Nos.12125103 and 12071362);the Natural Science Foundation of Hubei Province(Nos.2021AAA010 and 2019CFA007);by the Fundamental Research Funds for the Central Universities.The numerical calculations have been done at the Super Computing Center of Wuhan University。
This paper presents a specific network architecture for approximation of the first Piola-Kirchhoff stress.The neural network enables us to construct the constitutive relation based on both macroscopic observations and...
关键词:Piola-Kirchhoff stress deep neural networks Cauchy-Born rule 
Analysis of Weakly Nonlinear Evolution Characteristics of Flow in the Constant Curvature Bend
《Advances in Applied Mathematics and Mechanics》2024年第1期101-121,共21页Bin Li Haijue Xu Yuchuan Bai Ziqing Ji 
supported by the National Natural Science Foundation of China(Grant Nos.51979185 and 51879182)。
The meandering river is an unstable system with the characteristic of nonlinearity,which results from the instability of the flow and boundary.Focusing on the hydrodynamic nonlinearity of the bend,we use the weakly no...
关键词:Curvature bend HYDRODYNAMICS weakly nonlinearity disturbance vorticity 
On the Characteristic Length Scale for the Synthetic Turbulence Based on the Spalart-Allmaras Model
《Advances in Applied Mathematics and Mechanics》2024年第1期122-145,共24页Qilong Guo Pengxin Liu Chen Li Dong Sun Xianxu Yuan 
supported by National Key Research and Development Program of China(No.2019YFA0405201);National Natural Science Foundation of China(Nos.12002360 and 92052301);National Numerical Windtunnel project。
In the hybrid RANS-LES simulations,proper turbulent fluctuations should be added at the RANS-to-LES interface to drive the numerical solution restoring to a physically resolved turbulence as rapidly as possible.Such t...
关键词:Length scale synthetic turbulence hybrid RANS-LES Spalart-Allmaras model 
A Compact Difference Scheme for Time-Space Fractional Nonlinear Diffusion-Wave Equations with Initial Singularity
《Advances in Applied Mathematics and Mechanics》2024年第1期146-163,共18页Emadidin Gahalla Mohmed Elmahdi Sadia Arshad Jianfei Huang 
supported by Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201427);National Natural Science Foundation of China(Grant Nos.11701502 and 11871065)。
In this paper,we present a linearized compact difference scheme for onedimensional time-space fractional nonlinear diffusion-wave equations with initial boundary value conditions.The initial singularity of the solutio...
关键词:Fractional nonlinear diffusion-wave equations finite difference method fourth-order compact operator STABILITY CONVERGENCE 
A Mass-Preserving Characteristic Finite Difference Method For Miscible Displacement Problem
《Advances in Applied Mathematics and Mechanics》2024年第1期164-180,共17页Jiansong Zhang Yue Yu Rong Qin Zhaohui Liu 
supported by the Fundamental Research Funds for the Central Universities(Grant No.22CX03020A).
In this article,a new characteristic finite difference method is developed for solving miscible displacement problem in porous media.The new method combines the characteristic technique with mass-preserving interpolat...
关键词:The method of characteristics mass-preserving finite difference miscible displacement problem 
A Vertex-Centered Arbitrary Lagrangian-Eulerian Finite Volume Method with Sub-Cells for Two-Dimensional Compressible Flow
《Advances in Applied Mathematics and Mechanics》2024年第1期181-207,共27页Xiaolong Zhao Xijun Yu Zupeng Jia Shijun Zou Meilan Qiu 
supported by Natural Science Foundation of Guangdong province of China(Grant No.2018A030310038);National Natural Science Foundation of China(Grant Nos.11571002,11772067,11702028 and 12071046)。
In this paper,we present a new vertex-centered arbitrary LagrangianEulerian(ALE)finite volume scheme for two-dimensional compressible flow.In our scheme,the momentum equation is discretized on the vertex control volum...
关键词:Vertex-centered arbitrary Lagrangian-Eulerian sub-cells multi-material flows 
Local Discontinuous Galerkin Methods with Decoupled Implicit-Explicit Time Marching for the Growth-Mediated Autochemotactic Pattern Formation Model
《Advances in Applied Mathematics and Mechanics》2024年第1期208-236,共29页Hui Wang Hui Guo Jiansong Zhang Lulu Tian 
supported by National Natural Science Foundation of China(Grant No.11801569);Natural Science Foundation of Shandong Province(CN)(Grant No.ZR2021MA001);the Fundamental Research Funds for the Central Universities(Grant Nos.22CX03025A and 22CX03020A).
In this paper,two fully-discrete local discontinuous Galerkin(LDG)methods are applied to the growth-mediated autochemotactic pattern formation model in self-propelling bacteria.The numerical methods are linear and dec...
关键词:Local discontinuous Galerkin methods implicit-explicit time-marching scheme error estimate growth-mediated autochemotactic pattern formation model 
检索报告 对象比较 聚类工具 使用帮助 返回顶部