LAY

作品数:233被引量:393H指数:10
导出分析报告
相关领域:文化科学更多>>
相关作者:岳前进张向锋梁辉王辉何宁更多>>
相关机构:中国海洋石油总公司大连理工大学中海石油(中国)有限公司海南分公司浙江大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划国家科技重大专项国家高技术研究发展计划更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 主题=F-Px
条 记 录,以下是1-6
视图:
排序:
Distributed Deep Reinforcement Learning:A Survey and a Multi-player Multi-agent Learning Toolbox
《Machine Intelligence Research》2024年第3期411-430,共20页Qiyue Yin Tongtong Yu Shengqi Shen Jun Yang Meijing Zhao Wancheng Ni Kaiqi Huang Bin Liang Liang Wang 
supported by Open Fund/Postdoctoral Fund of the Laboratory of Cognition and Decision Intelligence for Complex Systems,Institute of Automation,Chinese Academy of Sciences,China(No.CASIA-KFKTXDA27040809).
With the breakthrough of AlphaGo,deep reinforcement learning has become a recognized technique for solving sequential decision-making problems.Despite its reputation,data inefficiency caused by its trial and error lea...
关键词:Deep reinforcement learning distributed machine learning self-play population-play TOOLBOX 
Optimal Strategy for Aircraft Pursuit-evasion Games via Self-play Iteration
《Machine Intelligence Research》2024年第3期585-596,共12页Xin Wang Qing-Lai Wei Tao Li Jie Zhang 
In this paper,the pursuit-evasion game with state and control constraints is solved to achieve the Nash equilibrium of both the pursuer and the evader with an iterative self-play technique.Under the condition where th...
关键词:Differential games pursuit-evasion games nonlinear control optimal control Nash equilibrium solution 
AI in Human-computer Gaming:Techniques,Challenges and Opportunities被引量:2
《Machine Intelligence Research》2023年第3期299-317,共19页Qi-Yue Yin Jun Yang Kai-Qi Huang Mei-Jing Zhao Wan-Cheng Ni Bin Liang Yan Huang Shu Wu Liang Wang 
National Natural Science Foundation of China(No.61906197).
With the breakthrough of AlphaGo,human-computer gaming AI has ushered in a big explosion,attracting more and more researchers all over the world.As a recognized standard for testing artificial intelligence,various hum...
关键词:Human-computer gaming AI intelligent decision making deep reinforcement learning self-play 
Autonomous air combat decision-making of UAV based on parallel self-play reinforcement learning被引量:5
《CAAI Transactions on Intelligence Technology》2023年第1期64-81,共18页Bo Li Jingyi Huang Shuangxia Bai Zhigang Gan Shiyang Liang Neretin Evgeny Shouwen Yao 
National Natural Science Foundation of China,Grant/Award Number:62003267;Fundamental Research Funds for the Central Universities,Grant/Award Number:G2022KY0602;Technology on Electromagnetic Space Operations and Applications Laboratory,Grant/Award Number:2022ZX0090;Key Core Technology Research Plan of Xi'an,Grant/Award Number:21RGZN0016。
Aiming at addressing the problem of manoeuvring decision-making in UAV air combat,this study establishes a one-to-one air combat model,defines missile attack areas,and uses the non-deterministic policy Soft-Actor-Crit...
关键词:air combat decision deep reinforcement learning parallel self-play SAC algorithm UAV 
A Monte Carlo Neural Fictitious Self-Play approach to approximate Nash Equilibrium in imperfect-information dynamic games被引量:5
《Frontiers of Computer Science》2021年第5期137-150,共14页Li ZHANG Yuxuan CHEN Wei WANG Ziliang HAN Shijian Li Zhijie PAN Gang PAN 
National Key Research and Development Program of China(2017YFB1002503);Science and Technology Innovation 2030-“New Generation Artificial Intelligence”Major Project(2018AAA0100902),China.
Solving the optimization problem to approach a Nash Equilibrium point plays an important role in imperfect information games,e.g.,StarCraft and poker.Neural Fictitious Self-Play(NFSP)is an effective algorithm that lea...
关键词:approximate Nash Equilibrium imperfect-information games dynamic games Monte Carlo tree search Neural Fictitious Self-Play reinforcement learning 
Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning
《Journal of Intelligent Learning Systems and Applications》2010年第2期57-68,共12页Marco A. Wiering 
A promising approach to learn to play board games is to use reinforcement learning algorithms that can learn a game position evaluation function. In this paper we examine and compare three different methods for genera...
关键词:Board GAMES Reinforcement LEARNING TD(λ) Self-Play LEARNING From Demonstration 
检索报告 对象比较 聚类工具 使用帮助 返回顶部