SEGMENT

作品数:529被引量:1099H指数:16
导出分析报告
相关作者:赵靖邓倩妮陶慕柳陈容温建中更多>>
相关机构:浙江大学北京邮电大学吉林大学中兴通讯股份有限公司更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划国家高技术研究发展计划中国博士后科学基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
Research on the three-dimensional electrical structure of the shallow portion of the southern segment of the Red River Fault(Dazhai Village)
《Earth and Planetary Physics》2025年第2期212-224,共13页Jiong Zhang Yan Jing XiaoBin Chen JunTao Cai ZhongYin Liu XingXing Huang PeiJie Wang 
supported by research grants from the National Institute of Natural Hazards, MEMC (ZDJ2020-13);the Innovation Team Project from National Institute of Natural Hazards, MEMC (2023-JBKY-59);the National Natural Science Foundation of China (42174093)。
No earthquake of magnitude six or greater has been recorded historically in the southern segment of the Red River Fault(RRF).This absence constitutes a significant seismic gap, suggesting a risk of future strong earth...
关键词:the southern segment of the Red River Fault electrical structure MAGNETOTELLURICS 
Upper crustal azimuthal anisotropy and seismogenic tectonics of the Hefei segment of the Tan-Lu Fault Zone from ambient noise tomography
《Earth and Planetary Physics》2025年第2期253-265,共13页Cheng Li HuaJianYao Song Luo HaiJiang Zhang LingLi Li XiaoLi Wang ShengJun Ni 
financially supported by the National Key Research and Development Program of China (2022YFC3005600);the Foundation of the Anhui Educational Commission (2023AH051198);the National Natural Science Foundation of China (42125401 and 42104063);the Joint Open Fund of Mengcheng National Geophysical Observatory (MENGO-202201)。
The Tan-Lu Fault Zone is a large NNE-trending fault zone that has a substantial effect on the development of eastern China and its earthquake disaster prevention efforts. Aiming at the azimuthally anisotropic structur...
关键词:ambient noise tomography azimuthal anisotropy upper crust seismogenic structure the Tan-Lu Fault Zone Hefei segment 
A segment-wise dynamic programming algorithm for BSDEs|
《Probability, Uncertainty and Quantitative Risk》2025年第1期103-134,共32页Christian Bender Steffen Meyer 
We introduce and analyze a family of linear least-squares Monte Carlo schemesfor backward SDEs, which interpolate between the one-step dynamic programmingscheme of Lemor, Warin, and Gobet (Bernoulli, 2006) and the mul...
关键词:Backward stochastic differential equations Empirical regression Dynamic programming Monte Carlo methods 
基于SAM图像处理的堆石料级配计算方法及验证
《水力发电》2025年第2期80-86,共7页张振伟 蔡可天 高轩 贺一轩 王建 鲁洋 
国家自然科学基金资助项目(52279099);国网新源集团有限公司科技项目(SGXYKJ-2023-109)。
堆石料级配检测是堆石坝施工过程中质量控制的重要环节,传统方法通常采用现场人工筛分法测量,存在检测样本少、效率低、干扰施工等问题。提出了一种基于图像处理的堆石料级配计算方法,采用国际最新Mata AI开源的通用图像分割大模型Segme...
关键词:堆石料 级配 Segment Anything Model(SAM) 图像识别 快速检测 
YOLOv8改进算法在油茶果分拣中的应用
《林业工程学报》2025年第1期120-127,共8页刘姜毅 高自成 刘怀粤 尹浇钦 罗媛尹 
国家重点研发计划(2022YFD2202103);国家林业和草原局应急科技项目(202202-2);井冈山农高区省级科技专项揭榜挂帅项目(20222-051247)。
现有的油茶果分拣系统所依赖的YOLO等算法的目标检测、实例分割在低尺寸及密集型样本中鲁棒性较差,存在机械臂常抓取到枝叶、抓取不牢固、易脱落等问题。大部分系统使用目标识别,无法准确识别油茶果具体轮廓信息,不能对油茶果进行大小...
关键词:油茶果 三维动态卷积 实例分割 YOLOv8 Segment Anything Model Wise⁃IoU 
Navigating the challenges of laparoscopic anatomical SVIII resection:A step forward in hepatobiliary surgery
《World Journal of Gastrointestinal Surgery》2025年第2期308-311,共4页Jin-Wei Zhang 
Supported by National Natural Science Foundation of China,No.82170406 and No.81970238.
This article comments on the study by Peng et al,published in the World Journal of Gastrointestinal Surgery,representing a notable advancement in hepatobiliary surgery.This article examines laparoscopic anatomical seg...
关键词:Laparoscopic liver resection Anatomical segmentectomy Segment VIII Middle hepatic fissure approach Surgical techniques 
COMPrompter:reconceptualized segment anything model with multiprompt network for camouflaged object detection
《Science China(Information Sciences)》2025年第1期186-200,共15页Xiaoqin ZHANG Zhenni YU Li ZHAO Deng-Ping FAN Guobao XIAO 
supported in part by National Natural Science Foundation of China(Grant Nos.U2033210,U24A20242,62101387,62475241);Zhejiang Provincial Natural Science Foundation(Grant No.LDT23F02024F02).
We rethink the segment anything model(SAM)and propose a novel multiprompt network called COMPrompter for camouflaged object detection(COD).SAM has zero-shot generalization ability beyond other models and can provide a...
关键词:segment anything model camouflaged object detection BOUNDARY PROMPT 
Temporal assessment of emission inventory model for Indian heavy commercial vehicle segment:A top-down approach
《International Journal of Transportation Science and Technology》2024年第4期150-164,共15页Vikrant Bhalerao Kirtesh Gadiya Gopal Patil Prakash Rao 
Heavy commercial vehicles(HCVs)are pivotal to India’s economy,but are also significant sources of air pollution.To address this issue,the Indian government implemented Bharat stage VI(BS-VI)emission standards in 2020...
关键词:Transportation emission Emission inventory&projection Indian heavy commercial vehicle(HCV) SEGMENT 
Twin Horsetailing Structures in the Extensional Regime based on Physical Experiment
《Acta Geologica Sinica(English Edition)》2024年第6期1649-1658,共10页LAO Haigang XU Hongyuan WANG Yongshi MAO Cui Osman Salad HERSI LI Dianheng 
Horsetailing is an important feature to identify the strike-slip structure and indicates the movement mode of the fault.However,the formation mechanism of horsetailing in the extensional regime remains unclear.In this...
关键词:fault segment extensional regime horsetailing non-coaxial stretching 
FedACT:An adaptive chained training approach for federated learning in computing power networks
《Digital Communications and Networks》2024年第6期1576-1589,共14页Min Wei Qianying Zhao Bo Lei Yizhuo Cai Yushun Zhang Xing Zhang Wenbo Wang 
supported by the National Key R&D Program of China(No.2021YFB2900200)。
Federated Learning(FL)is a novel distributed machine learning methodology that addresses large-scale parallel computing challenges while safeguarding data security.However,the traditional FL model in communication sce...
关键词:Computing power network(CPN) Federated learning(FL) Segment routing IPv6(SRv6) Communication overheads Model accuracy 
检索报告 对象比较 聚类工具 使用帮助 返回顶部