Supported by the National Natural Science Foundation of China(21376231)
To achieve green hydrolysis technology of hemicellulose through repeated using hydrolysate, the hydrolysis of hemicellulose in corncob was studied. The influence of repeated use of corncob hydrolysate on concentration...
Supported by the National Natural Science Foundation of China(21376231)
Solid–liquid phase equilibrium data for binary(L-arabinose–water) and(D-xylose–water) systems at temperatures from(269.85–298.05) K and ternary(L-arabinose–D-xylose–water) system at temperatures of 273.85 K,278....
Supported by the National Natural Science Foundation of China(20306026 and 21376215);the National High Technology Research and Development Program of China(2012AA022302)
D-Glucose, L-arabinose, D-mannose, D-xylose, and cellobiose are saccharification products of lignocellulose and important carbon sources for industrial fermentation. The fermentation efficiency with each of the five s...
Supported by Science and Technology Breakthrough Major Project in Henan Province(112101210200)
The solubility of D-xylose in formic acid and binary solvents of formic acid with formic acid and acetic acid, propionic acid, n-butyric acid or isobutyric acid was measured in the temperature range from 300.35 to 325...
Supported by the National Natural Science Foundation of China (No.20476089) and the Project of the Ministry of Science and Technology of China (No.2004CCA05500).
The kinetics of non-catalyzed decompositions of xylose and its decomposition product furfural in high temperature liquid water (HTLW) was studied for temperature from 180 to 220℃ and under pressure of 10MPa. The ma...