VIOLENCE

作品数:273被引量:60H指数:4
导出分析报告
相关作者:缪怡曹明伦郑莹尤小云丁希更多>>
相关机构:湖南大学复旦大学清华大学四川大学更多>>
相关期刊:更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 学科=自动化与计算机技术x
条 记 录,以下是1-10
视图:
排序:
A violence detection method based on deep and shallow feature fusion
《Instrumentation》2024年第4期64-75,共12页Lin'en Liu Xuguang Zhang 
In the research of video-based violent behavior detection,the motion information in the video is vital for violence detection.How to highlight motion information in videos and integrate spatiotemporal information is a...
关键词:SURVEILLANCE optical flow violence detection deep learning 
Balancing Accuracy and Training Time in Federated Learning for Violence Detection in Surveillance Videos:A Study of Neural Network Architectures
《Journal of Computer Science & Technology》2024年第5期1029-1039,共11页Quentin Pajon Swan Serre Hugo Wissocq Léo Rabaud Siba Haidar Antoun Yaacoub 
This paper presents an original investigation into the domain of violence detection in videos,introducing an innovative approach tailored to the unique challenges of a federated learning environment.The study encompas...
关键词:artificial intelligence federated learning neural network violence detection video analysis 
AnimeNet: A Deep Learning Approach for Detecting Violence and Eroticism in Animated Content
《Computers, Materials & Continua》2023年第10期867-891,共25页Yixin Tang 
Cartoons serve as significant sources of entertainment for children and adolescents.However,numerous animated videos contain unsuitable content,such as violence,eroticism,abuse,and vehicular accidents.Current content ...
关键词:Computer vision ANIMATION deep learning classification attention mechanism 
An Efficient Attention-Based Strategy for Anomaly Detection in Surveillance Video
《Computer Systems Science & Engineering》2023年第9期3939-3958,共20页Sareer Ul Amin Yongjun Kim Irfan Sami Sangoh Park Sanghyun Seo 
This research was supported by the Chung-Ang University Research Scholarship Grants in 2021 and the Culture,Sports and Tourism R&D Program through the Korea Creative Content Agency grant funded by the Ministry of Culture,Sports,and Tourism in 2022(Project Name:Development of Digital Quarantine and Operation Technologies for Creation of Safe Viewing Environment in Cultural Facilities,Project Number:R2021040028,Contribution Rate:100%).
In the present technological world,surveillance cameras generate an immense amount of video data from various sources,making its scrutiny tough for computer vision specialists.It is difficult to search for anomalous e...
关键词:Attention-based anomaly detection video shots segmentation video surveillance computer vision deep learning smart surveillance system violence detection attention model 
Anomalous Situations Recognition in Surveillance Images Using Deep Learning被引量:1
《Computers, Materials & Continua》2023年第7期1103-1125,共23页Qurat-ul-Ain Arshad Mudassar Raza Wazir Zada Khan Ayesha Siddiqa Abdul Muiz Muhammad Attique Khan Usman Tariq Taerang Kim Jae-Hyuk Cha 
supported by the“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP);granted financial resources from the Ministry of Trade,Industry Energy,Republic ofKorea.(No.20204010600090).
Anomalous situations in surveillance videos or images that may result in security issues,such as disasters,accidents,crime,violence,or terrorism,can be identified through video anomaly detection.However,differentiat-i...
关键词:Anomaly detection anomalous events anomalous behavior anomalous objects violence detection deep learning 
An Efficient Violence Detection Method Based on Temporal Attention Mechanism
《Instrumentation》2023年第2期49-56,共8页WANG Binxu ZHANG Xuguang 
Violence detection is very important for public safety.However,violence detection is not an easy task.Because recognizing violence in surveillance video requires not only spatial information but also sufficient tempor...
关键词:Violence Detection Temporal Attention Convolutional LSTM CNN-RNN 
Predicting Violence-Induced Stress in an Arabic Social Media Forum
《Intelligent Automation & Soft Computing》2023年第2期1423-1439,共17页Abeer Abdulaziz AlArfaj Nada Ali Hakami Hanan Ahmed Hosni Mahmoud 
funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R113);Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia。
Social Media such as Facebook plays a substantial role in virtual com-munities by sharing ideas and ideologies among different populations over time.Social interaction analysis aids in defining people’s emotions and a...
关键词:Arabic language analysis violence-induced stress detection hybrid model deep learning 
A Skeleton-based Approach for Campus Violence Detection被引量:1
《Computers, Materials & Continua》2022年第7期315-331,共17页Batyrkhan Omarov Sergazy Narynov Zhandos Zhumanov Aidana Gumar Mariyam Khassanova 
This work was supported by the grant“Development of artificial intelligenceenabled software solution prototype for automatic detection of potential facts of physical bullying in educational institutions”funded by the Ministry of Education of the Republic of Kazakhstan.Grant No.IRN AP08855520.
In this paper,we propose a skeleton-based method to identify violence and aggressive behavior.The approach does not necessitate highprocessing equipment and it can be quickly implemented.Our approach consists of two p...
关键词:PoseNET SKELETON VIOLENCE BULLYING artificial intelligence machine learning 
Experiences and Countermeasures of a Perinatal Ward Nursing Manager Dealing with Family Members’ Problematic Behaviors
《Open Journal of Nursing》2021年第11期981-1001,共21页Rie Wakimizu Yumiko Saito Makoto Saito 
Background: When family members and/or patients behave in a problematic way, this hinders the provision of safe and secure medical care. During the perinatal period, a family’s relationships and func...
关键词:Perinatal Care NURSING Family VIOLENCE COUNTERMEASURES 
Real-Time Violent Action Recognition Using Key Frames Extraction and Deep Learning被引量:2
《Computers, Materials & Continua》2021年第11期2217-2230,共14页Muzamil Ahmed Muhammad Ramzan Hikmat Ullah Khan Saqib Iqbal Muhammad Attique Khan Jung-In Choi Yunyoung Nam Seifedine Kadry 
This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2018R1D1A1B07042967);the Soonchunhyang University Research Fund.
Violence recognition is crucial because of its applications in activities related to security and law enforcement.Existing semi-automated systems have issues such as tedious manual surveillances,which causes human err...
关键词:Violence detection violence recognition deep learning convolutional neural network inception v4 keyframe extraction 
检索报告 对象比较 聚类工具 使用帮助 返回顶部