ISENTROPIC

作品数:111被引量:167H指数:7
导出分析报告
相关领域:理学天文地球更多>>
相关作者:陈荣钱尤延铖张炳川蒋大凯贾旭轩更多>>
相关机构:北京空天技术研究所厦门大学沈阳中心气象台复旦大学更多>>
相关期刊:《Science China Mathematics》《Advances in Aerodynamics》《Journal of Partial Differential Equations》《Acta Mathematicae Applicatae Sinica》更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划中国博士后科学基金福建省自然科学基金更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 期刊=Science China Mathematicsx
条 记 录,以下是1-10
视图:
排序:
The low Mach number limit of non-isentropic magnetohydrodynamic equations with large temperature variations in bounded domains
《Science China Mathematics》2024年第4期787-818,共32页Min Liang Yaobin Ou 
supported by National Natural Science Foundation of China(Grant Nos.11971477,12131007 and 11761141008);the Fundamental Research Funds for the Central Universities;the Research Funds of Renmin University of China(Grant No.18XNLG30)。
This paper verifies the low Mach number limit of the non-isentropic compressible magnetohydrodynamic(MHD)equations with or without the magnetic diffusion in a three-dimensional bounded domain when the temperature vari...
关键词:low Mach number limit non-isentropic compressible magnetohydrodynamic equations large temperature variations bounded domains 
The sharp time-decay rates for one-dimensional compressible isentropic Navier-Stokes and magnetohydrodynamic flows
《Science China Mathematics》2023年第3期475-502,共28页Yuhui Chen Minling Li Qinghe Yao Zheng-an Yao 
supported by Guangdong Basic and Applied Basic Research Foundation(Grant No.2019A1515110733);National Natural Science Foundation of China(Grant Nos.11971496 and 11972384);National Key R&D Program of International Collaboration(Grant No.2018YFE9103900);National Key R&D Program of China(Grant No.2020YFA0712500)。
In this paper, we investigate the large-time behavior of strong solutions to the Cauchy problem for one-dimensional compressible isentropic magnetohydrodynamic equations near a stable equilibrium. The difference betwe...
关键词:compressible Navier-Stokes equations magnetohydrodynamic equations optimal decay rates upper bound lower bound 
Variational rotating solutions to non-isentropic Euler-Poisson equations with prescribed total mass
《Science China Mathematics》2022年第10期2061-2078,共18页Yuan Yuan 
supported by National Natural Science Foundation of China(Grant Nos.11901208 and 11971009)。
This paper proves the existence of variational rotating solutions to the compressible non-isentropic Euler-Poisson equations with prescribed total mass.This extends the result of the isentropic case(see Auchmuty and B...
关键词:Euler-Poisson rotating gaseous star non-isentropic variational method 
Local weak solutions of the isentropic compressible Navier-Stokes equations in a half-space
《Science China Mathematics》2022年第5期993-1002,共10页Qin Duan Xiangdi Huang 
supported by National Natural Science Foundation of China (Grant No. 11771300);the Research Foundation for “Kong Que” Talents of Shenzhen;supported by National Natural Science Foundation of China (Grant Nos. 11971464, 11688101, 11731007 and 11671412);outh Innovation Promotion Association, Chinese Academy of Sciences
In this paper, we establish the local existence of weak solutions with higher regularity of the threedimensional half-space compressible isentropic Navier-Stokes equations with the adiabatic exponent γ > 1 in the pre...
关键词:Navier-Stokes equation HALF-SPACE local weak solution VACUUM 
Delta-shocks and vacuums in zero-pressure gas dynamics by the flux approximation被引量:3
《Science China Mathematics》2015年第11期2329-2346,共18页YANG HanChun LIU JinJing 
supported by National Natural Science Foundation of China(Grant No.11361073)
In this paper,firstly,by solving the Riemann problem of the zero-pressure flow in gas dynamics with a flux approximation,we construct parameterized delta-shock and constant density solutions,then we show that,as the f...
关键词:Euler equations of isentropic gas dynamics zero-pressure flow transport equations Riemann problem delta shock wave vacuum flux approximation numerical simulations 
Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks被引量:6
《Science China Mathematics》2015年第4期653-672,共20页HUANG FeiMin WANG Yi WANG Yong YANG Tong 
supported by National Basic Research Program of China(973 Program)(Grant No.2011CB808002);the National Center for Mathematics and Interdisciplinary Sciences,Academy of Mathematics and Systems Science,Chinese Academy of Sciences and the Chinese Academy of Sciences Program for Cross&Cooperative Team of the Science&Technology Innovation,National Natural Sciences Foundation of China(Grant Nos.11171326,11371064 and 11401565);the General Research Fund of Hong Kong(Grant No.City U 103412)
We study the vanishing viscosity of the Navier-Stokes equations for interacting shocks. Given an entropy solution to p-system which consists of two different families of shocks interacting at some positive time,we sho...
关键词:isentropic Navier-Stokes equations isentropic Euler equations interacting shock vanishing viscosity entropy solution 
Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system被引量:3
《Science China Mathematics》2015年第1期61-76,共16页JIANG Song LI FuCai 
supported by National Basic Research Program of China (Grant No. 2011CB309705);National Natural Science Foundation of China (Grant Nos. 11229101, 11371065 and 11271184);Program for New Century Excellent Talents in University (Grant No. 110227);the Priority Academic Program Development of Jiangsu Higher Education Institutions;the Fundamental Research Funds for the Central Universities
We investigate the zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system.We justify this singular limit rigorously in the framework of smooth solutions and obtain the nonisentropic com...
关键词:non-isentropic compressible Euler-Maxwell system non-isentropic compressible magnetohydro-dynamic equations zero dielectric constant limit 
Existence and uniqueness of global classical solutions to 3D isentropic compressible Navier-Stokes equations with general initial data
《Science China Mathematics》2014年第7期1463-1478,共16页ZHANG PeiXin ZHAO JunNing 
supported by National Natural Science Foundation of China (Grant Nos.11001090 and 10971171);the Fundamental Research Funds for the Central Universities (Grant No.11QZR16)
In this paper we study the global existence and uniqueness of classical solutions to the Cauchy problem for 3D isentropic compressible Navier-Stokes equations with general initial data which could contain vacuum.We gi...
关键词:compressible Navier-Stokes equations general initial data global classical solutions 
Zero dissipation limit to a Riemann solution consisting of two shock waves for the 1D compressible isentropic Navier-Stokes equations被引量:6
《Science China Mathematics》2013年第11期2205-2232,共28页ZHANG YingHui PAN RongHua TAN Zhong panrh@math.gatech.edu, ztan85@163.com 
supported by National Natural Science Foundation of China(Grant Nos.11226170,10976026 and 11271305);China Postdoctoral Science Foundation Funded Project(Grant No.2012M511640);Hunan Provincial Natural Science Foundation of China(Grant No.13JJ4095);National Science Foundation of USA(Grant Nos.DMS-0807406 and DMS-1108994)
We investigate the zero dissipation limit problem of the one-dimensional compressible isentropic Navier-Stokes equations with Riemann initial data in the case of the composite wave of two shock waves. It is shown that...
关键词:zero dissipation limit compressible Navier-Stokes equations shock waves initial layers 
Global classical solution to the three-dimensional isentropic compressible Navier-Stokes equations with general initial data被引量:2
《Science China Mathematics》2012年第12期2457-2468,共12页DENG XueMei ZHANG PeiXin ZHAO JunNing 
supported by National Natural Science Foundation of China (Grant No.11001090);the Fundamental Research Funds for the Central Universities (Grant No. 11QZR16)
We establish the global existence and uniqueness of classical solutions to the Cauchy problem for the isentropic compressible Navier-Stokes equations in the three space dimensions with general initial data which could...
关键词:compressible Navier-Stokes equations large viscosity coefficient global classical solutions 
检索报告 对象比较 聚类工具 使用帮助 返回顶部