QUASI-LIKELIHOOD

作品数:21被引量:53H指数:3
导出分析报告
相关领域:理学更多>>
相关机构:贵州财经大学更多>>
相关期刊:《Statistical Theory and Related Fields》《Science China Mathematics》《Acta Mathematicae Applicatae Sinica》《Open Journal of Statistics》更多>>
相关基金:国家自然科学基金中国博士后科学基金国家社会科学基金更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 期刊=Journal of Systems Science & Complexityx
条 记 录,以下是1-2
视图:
排序:
Asymptotic Properties of Maximum Quasi-Likelihood Estimators in Generalized Linear Models with Diverging Number of Covariates被引量:1
《Journal of Systems Science & Complexity》2018年第5期1362-1376,共15页GAO Qibing DU Xiuli ZHOU Xiuqing XIE Fengchang 
supported by Major Programm of Natural Science Foundation of China under Grant No.71690242;the Natural Science Foundation of China under Grant No.11471252;the National Social Science Fund of China under Grant No.18BTJ040
In this paper, for the generalized linear models (GLMs) with diverging number of covariates, the asymptotic properties of maximum quasi-likelihood estimators (MQLEs) under some regular conditions are developed. Th...
关键词:Asymptotic normality diverging dimension generalized linear models linear hypothesis maximum quasi-likelihood estimators. 
ASYMPTOTIC NORMALITY OF MAXIMUM QUASI-LIKELIHOOD ESTIMATORS IN GENERALIZED LINEAR MODELS WITH FIXED DESIGN被引量:3
《Journal of Systems Science & Complexity》2008年第3期463-473,共11页Qibing GAO Yaohua WU Chunhua ZHU Zhanfeng WANG 
the National Natural Science Foundation of China under Grant Nos.10171094,10571001,and 30572285;the Foundation of Nanjing Normal University under Grant No.2005101XGQ2B84;the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant No.07KJD110093;the Foundation of Anhui University under Grant No.02203105
In generalized linear models with fixed design, under the assumption λ↑_n→∞ and other regularity conditions, the asymptotic normality of maximum quasi-likelihood estimator ^↑βn, which is the root of the quasi-li...
关键词:Asymptotic normality fixed design generalized linear models maximum quasi-likelihood estimator 
检索报告 对象比较 聚类工具 使用帮助 返回顶部