FLAG-TRANSITIVE

作品数:14被引量:16H指数:3
导出分析报告
相关领域:理学农业科学更多>>
相关期刊:《Journal of Mathematical Research with Applications》《Science China Mathematics》《Algebra Colloquium》《Frontiers of Mathematics in China》更多>>
相关基金:国家自然科学基金广东省自然科学基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
On 2-(v,k,λ)Designs with Flag-Transitive Automorphism Groups of Product Action Type
《Algebra Colloquium》2023年第2期351-360,共10页Zhilin Zhang Shenglin Zhou 
Zhilin Zhang was supported by the National Natural Science Foundation of China(12001204);Shenglin Zhou was supported by the National Natural Science Foundation of China(12271173).
In this paper we present two new families of 2-(v,k,λ)designs with a flag-transitive and point-primitive automorphism group of product action type.More sur-prisingly,one of them is still a family of 2-(v,k,λ)designs...
关键词:FLAG-TRANSITIVE 2-(v k λ) design O'Nan-Scott theorem product action type 
Flag-Transitive 3-(v,k,3)Designs and PSL(2,q)Groups
《Algebra Colloquium》2021年第1期33-38,共6页Shaojun Dai Shangzhao Li 
Supported by the National Natural Science Foundation of China(Grant Nos.11301377,11701046,11671402);the Natural Science Foundation of Jiangsu Province(BK20170433);the Universities Natural Science Foundation of Jiangsu Province(16KJB110001).
This article is a contribution to the study of the automorphism groups of 3-(v,k,3)designs.Let S=(P,B)be a non-trivial 3-(q+1,k,3)design.If a two-dimensional projective linear group PSL(2,q)acts flag-transitively on S...
关键词:FLAG-TRANSITIVE 3-designs PSL(2 q)groups 
Complete Classification of Flag-Transitive Point-Primitive2-Designs with Socle M11
《Journal of Mathematical Research with Applications》2020年第6期551-557,共7页Delu TIAN 
Supported by the National Natural Science Foundation of China(Grant No.11801092);the Characteristic Innovation Project(Natural Science)of Guangdong Province(Grant No.2018KTSCX160);the Fund of Guangzhou Science and Technology(Grant No.201804010088)。
In recent years several authors have determined some 2-designs with flag-transitive point-primitive automorphism group G of almost simple type with sporadic socle. Here we obtain the complete classification of flag-tr...
关键词:2-design FLAG-TRANSITIVE point-primitive Mathieu group 
Flag-transitive 2-(v,5,λ)designs with sporadic socle被引量:1
《Frontiers of Mathematics in China》2020年第6期1201-1210,共10页Jiaxin SHEN Shenglin ZHOU 
supported by the National Natural Science Foundation of China(Grant No.11871224).
We state that the flag-transitive automorphism group of a 2-(v,5,λ)design D is primitive of affine type or almost simple type.W e also find that there are up to isomorphism 202-(v,5,λ)designs admitting flag-transiti...
关键词:2-design PRIMITIVITY flag-transitivity sporadic simple group 
Flag-Transitive Point-Primitive(v, k, 4)-Symmetric Designs with PSL_n(q) as Socle被引量:1
《Journal of Mathematical Research with Applications》2018年第1期34-42,共9页Yan ZHU Shenglin ZHOU 
Supported by the National Natural Science Foundation of China(Grant Nos.11471123;11626206);the Scientific Research Foundation for Excellent Talents of Xuzhou Medical University(Grant No.D2016002)
Let D be a nontrivial symmetric(v, k, 4) design, and G ≤ Aut(D) be flag-transitive and point-primitive with PSL_n(q) as socle. Then D is a 2-(15, 8, 4) symmetric design and Soc(G) = PSL_2(9).
关键词:symmetric design flag-transitive point-primitive classical group 
Block-Transitive 4-(v,k,4) Designs and Ree Groups
《Advances in Pure Mathematics》2016年第5期317-320,共4页Shaojun Dai Ruihai Zhang 
This article is a contribution to the study of the automorphism groups of  designs. Let be a non-trivial  design where for some positive integer , and  is block-transitive. If the socle of G is isomorphic to the simpl...
关键词:FLAG-TRANSITIVE BLOCK-TRANSITIVE T-DESIGN Ree Group 
Classification of Flag-Transitive Primitive Symmetric(v, k, λ) Designs with PSL(2, q) as Socle被引量:1
《Journal of Mathematical Research with Applications》2016年第2期127-139,共13页Delu TIAN Shenglin ZHOU 
Supported by the National Natural Science Foundation of China(Grant Nos.11471123;11426066);the Natural Science Foundation of Guangdong Province(Grant No.S2013010011928)
Let D be a nontrivial symmetric(v, k, λ) design, and G be a subgroup of the full automorphism group of D. In this paper we prove that if G acts flag-transitively, pointprimitively on D and Soc(G) = PSL(2, q), t...
关键词:symmetric design flag-transitive primitive group 
Flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) =1 and alternating socle被引量:1
《Frontiers of Mathematics in China》2015年第6期1483-1496,共14页Yan ZHU Haiyan GUAN Shenglin ZHOU 
Acknowledgements The authors would like to thank the anonymous referees for their valuable suggestions and comments which helped to improve this paper. This work was supported by the National Natural Science Foundation of China (Grant No. 11471123) and the Natural Science Foundation of Guangdong Province (Grant No. $2013010011928).
Consider the flag-transitive 2-(v, k, λ) symmetric designs with (k, λ)= 1. We prove that if () is a nontrivial 2-(v, k, λ)symmetric design with (k,λ) = 1 and G ≤ Aut() is flag-transitive with Sot(G)...
关键词:Symmetric design automorphism group alternating group flagtransitive 
Flag-Transitive 6-(v, k, 2) Designs
《Advances in Pure Mathematics》2014年第5期203-208,共6页Xiaolian Liao Shangzhao Li Guohua Chen 
The automorphism group of a flag-transitive 6–(v, k, 2) design is a 3-homogeneous permutation group. Therefore, using the classification theorem of 3–homogeneous permutation groups, the classification of flag-transi...
关键词:FLAG-TRANSITIVE Combinatorial Design PERMUTATION GROUP AFFINE GROUP 3-Homogeneous PERMUTATION Groups 
Affine groups and flag-transitive triplanes被引量:2
《Science China Mathematics》2012年第12期2557-2578,共22页DONG HuiLi ZHOU ShengLi 
supported by National Natural Science Foundation of China (Grant No. 11071081)
Let D be a nontrivial 2-(v, k, 3) symmetric design (triplane) and let G≤Aut(D) be flag-transitive and point-primitive. In this paper, we prove that if G is an affine group, then G≤AΓL1(q), where q is some power of ...
关键词:symmetric design triplane FLAG-TRANSITIVE point-primitive affine group 
检索报告 对象比较 聚类工具 使用帮助 返回顶部