SEMI-SUPERVISED

作品数:135被引量:285H指数:8
导出分析报告
相关领域:自动化与计算机技术更多>>
相关作者:马廷淮葛荐罗伟平石宁李洪奇更多>>
相关机构:上海交通大学南京信息工程大学华中师范大学中国石油大学(北京)更多>>
相关期刊:更多>>
相关基金:国家自然科学基金中国博士后科学基金北京市自然科学基金国家高技术研究发展计划更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
Semi-Supervised New Intention Discovery for Syntactic Elimination and Fusion in Elastic Neighborhoods
《Computers, Materials & Continua》2025年第4期977-999,共23页Di Wu Liming Feng Xiaoyu Wang 
supported by Research Projects of the Nature Science Foundation of Hebei Province(F2021402005).
Semi-supervised new intent discovery is a significant research focus in natural language understanding.To address the limitations of current semi-supervised training data and the underutilization of implicit informati...
关键词:Natural language understanding semi-supervised new intent discovery syntactic elimination contrast learning neighborhood sample fusion strategies bidirectional encoder representations from transformers(BERT) 
Semi-Supervised Medical Image Classification Based on Sample Intrinsic Similarity Using Canonical Correlation Analysis
《Computers, Materials & Continua》2025年第3期4451-4468,共18页Kun Liu Chen Bao Sidong Liu 
sponsored by the National Natural Science Foundation of China Grant No.62271302;the Shanghai Municipal Natural Science Foundation Grant 20ZR1423500.
Large amounts of labeled data are usually needed for training deep neural networks in medical image studies,particularly in medical image classification.However,in the field of semi-supervised medical image analysis,l...
关键词:Semi-supervised learning skin lesion classification sample relation consistency class imbalanced 
Semi-supervised cardiac magnetic resonance image segmentation based on domain generalization
《High Technology Letters》2025年第1期41-52,共12页SHAO Hong HOU Jinyang CUI Wencheng 
Supported by the National Natural Science Foundation of China(No.62001313);the Key Project of Liaoning Provincial Department of Science and Technology(No.2021JH2/10300134,2022JH1/10500004)。
In the realm of medical image segmentation,particularly in cardiac magnetic resonance imaging(MRI),achieving robust performance with limited annotated data is a significant challenge.Performance often degrades when fa...
关键词:SEMI-SUPERVISED domain generalization(DG) cardiac magnetic resonance image segmentation 
Ensemble Knowledge Distillation for Federated Semi-Supervised Image Classification
《Tsinghua Science and Technology》2025年第1期112-123,共12页Ertong Shang Hui Liu Jingyang Zhang Runqi Zhao Junzhao Du 
supported by the National Natural Science Foundation of China(Nos.62032017 and 62272368);Key Talent Project of Xidian University(No.QTZX24004);Innovation Capability Support Program of Shaanxi(No.2023-CX-TD-08);Shaanxi Qinchuangyuan“Scientists+Engineers”Team(No.2023KXJ-040);Science and Technology Program of Xi’an(No.23KGDW0005-2022).
Federated learning is an emerging privacy-preserving distributed learning paradigm,in which many clients collaboratively train a shared global model under the orchestration of a remote server.Most current works on fed...
关键词:federated learning semi-supervised learning federated semi-supervised learning knowledge distillation 
Enhanced battery life prediction with reduced data demand via semi-supervised representation learning
《Journal of Energy Chemistry》2025年第2期524-534,I0011,共12页Liang Ma Jinpeng Tian Tieling Zhang Qinghua Guo Chi Yung Chung 
supported by the National Natural Science Foundation of China(No.52207229);the Key Research and Development Program of Ningxia Hui Autonomous Region of China(No.2024BEE02003);the financial support from the AEGiS Research Grant 2024,University of Wollongong(No.R6254);the financial support from the China Scholarship Council(No.202207550010).
Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlo...
关键词:Lithium-ion batteries Battery degradation Remaining useful life Semi-supervised learning 
Predicting Lactobacillus delbrueckii subsp.bulgaricus-Streptococcus thermophilus interactions based on a highly accurate semi-supervised learning method
《Science China(Life Sciences)》2025年第2期558-574,共17页Shujuan Yang Mei Bai Weichi Liu Weicheng Li Zhi Zhong Lai-Yu Kwok Gaifang Dong Zhihong Sun 
supported by the National Key Research and Development Program of China(2022YFD2100700);the National Natural Science Foundation of China(32325040);Basic Scientific Research Business Fee Project of Universities Directly(BR22-14-01);the National Dairy Science and Technology Innovation Center(2022-Open Subject-6);Inner Mongolia Natural Science Foundation Project(2021MS06023);Inner Mongolia Science&Technology planning project(2022YFSJ0017);the earmarked fund for China Agricultural Research System(CARS36)。
Lactobacillus delbrueckii subsp.bulgaricus(L.bulgaricus)and Streptococcus thermophilus(S.thermophilus)are commonly used starters in milk fermentation.Fermentation experiments revealed that L.bulgaricus-S.thermophilus ...
关键词:Lactobacillus delbrueckii subsp.bulgaricus and Streptococcus thermophilus interaction prediction semi-supervised learning dairy starter artificial intelligence milk fermentation 
Stochastic Augmented-Based Dual-Teaching for Semi-Supervised Medical Image Segmentation
《Computers, Materials & Continua》2025年第1期543-560,共18页Hengyang Liu Yang Yuan Pengcheng Ren Chengyun Song Fen Luo 
supported by the Natural Science Foundation of China(No.41804112,author:Chengyun Song).
Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)t...
关键词:SEMI-SUPERVISED medical image segmentation contrastive learning stochastic augmented 
Exploring Unlabeled Data in Multiple Aspects for Semi-Supervised MRI Segmentation
《Health Data Science》2024年第1期177-190,共14页Qingyuan He Kun Yan Qipeng Luo Duan Yi Ping Wang Hongbin Han Defeng Liu 
funded by the Proof of Concept Program of Zhongguancun Science City and Peking University TTird Hospital(HDCXZHKC2022212);China Postdoctoral Science Foundation(2023M740079 and GZC20230058);Major Program of National Natural Science Foundation of China(62394310 and 62394314);Beijing Natural Science Foun dation(L222026).
Background:MRI segmentation offers crucial insights for automatic analysis.Although deep learningbased segmentation methods have attained cutting-edge performance,their efffcacy heavily relies on vast sets of meticulo...
关键词:ANALYSIS labeled DESIGNING 
A Survey on Supervised,Unsupervised,and Semi-Supervised Approaches in Crowd Counting
《Computers, Materials & Continua》2024年第12期3561-3582,共22页Jianyong Wang Mingliang Gao Qilei Li Hyunbum Kim Gwanggil Jeon 
supported by Research Project Support Program for Excellence Institute(2022,ESL)in Incheon National University.
Quantifying the number of individuals in images or videos to estimate crowd density is a challenging yet crucial task with significant implications for fields such as urban planning and public safety.Crowd counting ha...
关键词:Crowd counting density estimation convolutional neural network(CNN) un/semi-supervised learning 
A Graph-Based Semi-Supervised Approach for Few-Shot Class-Incremental Modulation Classification
《China Communications》2024年第11期88-103,共16页Zhou Xiaoyu Qi Peihan Liu Qi Ding Yuanlei Zheng Shilian Li Zan 
supported in part by the National Natural Science Foundation of China under Grant No.62171334,No.11973077 and No.12003061。
With the successive application of deep learning(DL)in classification tasks,the DL-based modulation classification method has become the preference for its state-of-the-art performance.Nevertheless,once the DL recogni...
关键词:deep learning few-shot label propagation modulation classification semi-supervised learning 
检索报告 对象比较 聚类工具 使用帮助 返回顶部