NON-DEGENERACY

作品数:14被引量:15H指数:3
导出分析报告
相关领域:理学更多>>
相关作者:李佳朱春鹏更多>>
相关机构:东南大学徐州工程学院更多>>
相关期刊:《Science China Mathematics》《Acta Mathematica Scientia》《Chinese Annals of Mathematics,Series B》《Acta Mathematica Sinica,English Series》更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
Infinitely many dichotomous solutions for the Schrödinger-Poisson system
《Science China Mathematics》2024年第9期2049-2070,共22页Yuke He Benniao Li Wei Long 
supported by National Natural Science Foundation of China(Grant Nos.12101274 and 12226309);the Jiangxi Province Science Fund for Distinguished Young Scholars(Grant No.20224ACB218001);supported by National Natural Science Foundation of China(Grant No.12271223);Jiangxi Provincial Natural Science Foundation(Grant No.20212ACB201003);Jiangxi Two Thousand Talents Program(Grant No.jxsq2019101001);Double-high Talents Program in Jiangxi Province。
In this paper,we consider the following Schrodinger-Poisson system{-ε^(2)Δu+V(x)u+K(x)Φ(x)u=|u|^(p-1)u in R^(N),-ΔΦ(x)=K(x)u^(2)in RN,,where e is a small parameter,1
关键词:dichotomous solutions NON-DEGENERACY Schrodinger-Poisson system 
New existence of multi-spike solutions for the fractional Schrodinger equations
《Science China Mathematics》2023年第5期977-1002,共26页Qing Guo Yuxia Guo Shuangjie Peng 
supported by National Natural Science Foundation of China(Grant No.11771469);Yuxia Guo was supported by National Natural Science Foundation of China(Grant No.11771235);Shuangjie Peng was supported by National Natural Science Foundation of China(Grant No.11831009).
We consider the following fractional Schr¨odinger equation:(-Δ)^(s)u+V(y)u=u^(p);u>0 in R^(N);(0.1)where s ∈(0,1),1
关键词:NON-DEGENERACY fractional Schrodinger equations Pohozaev identity Lyapunov-Schmidt reduction 
REVISITING A NON-DEGENERACY PROPERTY FOR EXTREMAL MAPPINGS
《Acta Mathematica Scientia》2021年第6期1829-1838,共10页Xiaojun HUANG 
Partially supported by NSF grants DMS-1665412 and DMS-2000050.
We extend an earlier result obtained by the author in [7].
关键词:non-degeneracy property extremal mapping PSEUDOCONVEX 
The Non-Degeneracy of Harmonic Structures on Planar Sierpinski Gaskets
《Analysis in Theory and Applications》2020年第4期510-516,共7页Shiping Cao Hua Qiu 
the Nature Science Foundation of China,Grant No.12071213.
We present a direct and short proof of the non-degeneracy of the harmonic structures on the level-n Sierpinski gaskets for any n≥2,which was conjectured by Hino in[1,2]and confirmed to be true by Tsougkas[8]very rece...
关键词:Fractal analysis harmonic functions fractal Laplacians harmonic structures Sierpinski gaskets. 
Existence of invariant curves for area-preserving mappings under weaker non-degeneracy conditions
《Frontiers of Mathematics in China》2020年第3期571-591,共21页Kun WANG Junxiang XU 
This work was supported in part by the National Natural Science Foundation of China(Grant Nos.11871146,11671077);the Innovation Project for college postgraduates in Jiangsu Province(No.KYZZ160113).
We consider a class of analytic area-preserving mappings Cm-smoothly depending on a parameter.Without imposing on any non-degeneracy assumption,we prove a formal KAM theorem for the mappings,which implies many previou...
关键词:Area-preserving mapping invariant curve KAM iteration nondegeneracy condition 
Existence of Invariant Tori in Reversible Mappings
《Acta Mathematica Sinica,English Series》2019年第9期1419-1452,共34页Sheng Qing HU 
In this paper, we study reversible diffeomorphisms with n angular variables and only one action variable. Under some reasonable non-degeneracy conditions, we prove that the reversible diffeomorphisms sufficiently clos...
关键词:REVERSIBLE DIFFEOMORPHISM invariant TORI NON-DEGENERACY conditions KAM method 
Numerical invariant tori of symplectic integrators for integrable Hamiltonian systems被引量:3
《Science China Mathematics》2018年第9期1567-1588,共22页Zhaodong Ding Zaijiu Shang 
supported by National Natural Science Foundation of China(Grant No.11671392)
In this paper, we study the persistence of invariant tori of integrable Hamiltonian systems satisfying Rssmann's non-degeneracy condition when symplectic integrators are applied to them. Meanwhile, we give an estimate...
关键词:Hamiltonian systems symplectic integrators KAM theory invariant tori twist symplectic mappings Rüissmann's non-degeneracy 
A NOTE ON THE UNIQUENESS AND THE NON-DEGENERACY OF POSITIVE RADIAL SOLUTIONS FOR SEMILINEAR ELLIPTIC PROBLEMS AND ITS APPLICATION被引量:1
《Acta Mathematica Scientia》2018年第4期1121-1142,共22页Shinji ADACHI Masataka SHIBATA Tatsuya WATANABE 
supported by JSPS Grant-in-Aid for Scientific Research(C)(15K04970)
In this paper, we are concerned with the uniqueness and the non-degeneracy of positive radial solutions for a class of semilinear elliptic equations. Using detailed ODE anal- ysis, we extend previous results to cases ...
关键词:positive radial solution UNIQUENESS NON-DEGENERACY shooting method 
Non-degeneracy of extremal points in multi-dimensional space被引量:3
《Science China Mathematics》2015年第11期2255-2260,共6页CHENG ChongQing ZHOU Min 
supported by National Basic Research Program of China(973 Program)(Grant No.2013CB834100);National Natural Science Foundation of China(Grant Nos.11171146 and 11201222);the Priority Academic Program Development of Jiangsu Higher Education Institutions
For a family of smooth functions defined in multi-dimensional space,we show that,under certain generic conditions,all minimal and maximal points are non-degenerate.
关键词:NON-DEGENERACY multi-dimensionM space smooth functions minimal and maximal points 
Non-degeneracy of Extremal Points
《Chinese Annals of Mathematics,Series B》2015年第1期45-50,共6页Min ZHOU 
supported by the National Natural Science Foundation of China(Nos.11201222,11171146);the Basic Research Program of Jiangsu Province(No.BK2008013);a program of the Priority Academic Program Development of Jiangsu Province
For a family of smooth functions, the author shows that, under certain generic conditions, all extremal(minimal and maximal) points are non-degenerate.
关键词:NON-DEGENERACY Extremal point Generic condition 
检索报告 对象比较 聚类工具 使用帮助 返回顶部