POINTER

作品数:48被引量:19H指数:3
导出分析报告
相关领域:自动化与计算机技术更多>>
相关作者:周玉成刘鑫钰侯晓鹏苗虎张星梅更多>>
相关机构:清华大学中国林业科学研究院河北省教育考试院石家庄市农林科学研究院更多>>
相关期刊:更多>>
相关基金:国家自然科学基金科研院所技术开发研究专项资金中央级公益性科研院所基本科研业务费专项国家重点基础研究发展计划更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 学科=自动化与计算机技术—控制科学与工程x
条 记 录,以下是1-3
视图:
排序:
Enhancing the generalization capability of 2D array pointer networks through multiple teacher-forcing knowledge distillation
《Journal of Automation and Intelligence》2025年第1期29-38,共10页Qidong Liu Xin Shen Chaoyue Liu Dong Chen Xin Zhou Mingliang Xu 
in part by the National Science Foundation of China under Grant No.62276238;in part by the National Science Foundation for Distinguished Young Scholars of China under Grant No.62325602;in part by the Natural Science Foundation of Henan,China under Grant No.232300421095.
The Heterogeneous Capacitated Vehicle Routing Problem(HCVRP),which involves efficiently routing vehicles with diverse capacities to fulfill various customer demands at minimal cost,poses an NP-hard challenge in combin...
关键词:Vehicle routing problem Multi-teacher knowledge distillation Teacher-forcing Pointer network 
Solving Combinatorial Optimization Problems with Deep Neural Network:A Survey
《Tsinghua Science and Technology》2024年第5期1266-1282,共17页Feng Wang Qi He Shicheng Li 
supported by the National Natural Science Foundation of China(Nos.62173258 and 61773296).
Combinatorial Optimization Problems(COPs)are a class of optimization problems that are commonly encountered in industrial production and everyday life.Over the last few decades,traditional algorithms,such as exact alg...
关键词:Combinatorial Optimization Problem(COPs) pointer network Transformer Graph Neural Network(GNN) Reinforcement Learning(RL) 
Learning to Branch in Combinatorial Optimization With Graph Pointer Networks
《IEEE/CAA Journal of Automatica Sinica》2024年第1期157-169,共13页Rui Wang Zhiming Zhou Kaiwen Li Tao Zhang Ling Wang Xin Xu Xiangke Liao 
supported by the Open Project of Xiangjiang Laboratory (22XJ02003);Scientific Project of the National University of Defense Technology (NUDT)(ZK21-07, 23-ZZCX-JDZ-28);the National Science Fund for Outstanding Young Scholars (62122093);the National Natural Science Foundation of China (72071205)。
Traditional expert-designed branching rules in branch-and-bound(B&B) are static, often failing to adapt to diverse and evolving problem instances. Crafting these rules is labor-intensive, and may not scale well with c...
关键词:Branch-and-bound(B&B) combinatorial optimization deep learning graph neural network imitation learning 
检索报告 对象比较 聚类工具 使用帮助 返回顶部