ROUGH_SET

作品数:355被引量:1080H指数:12
导出分析报告
相关作者:朱红吴渝王国胤李德敏胡学钢更多>>
相关机构:重庆邮电大学南昌大学湘潭大学山西大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家高技术研究发展计划国家重点基础研究发展计划国家教育部博士点基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
Optimization method of conditioning factors selection and combination for landslide susceptibility prediction
《Journal of Rock Mechanics and Geotechnical Engineering》2025年第2期722-746,共25页Faming Huang Keji Liu Shuihua Jiang Filippo Catani Weiping Liu Xuanmei Fan Jinsong Huang 
funded by the Natural Science Foundation of China(Grant Nos.42377164 and 41972280);the Badong National Observation and Research Station of Geohazards(Grant No.BNORSG-202305).
Landslide susceptibility prediction(LSP)is significantly affected by the uncertainty issue of landslide related conditioning factor selection.However,most of literature only performs comparative studies on a certain c...
关键词:Landslide susceptibility prediction Conditioning factors selection Support vector machine Random forest Rough set Artificial neural network 
Attribute Reduction on Decision Tables Based on Hausdorff Topology
《Computers, Materials & Continua》2024年第11期3097-3124,共28页Nguyen Long Giang Tran Thanh Dai Le Hoang Son Tran Thi Ngan Nguyen Nhu Son Cu Nguyen Giap 
funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant Number 102.05-2021.10.
Attribute reduction through the combined approach of Rough Sets(RS)and algebraic topology is an open research topic with significant potential for applications.Several research works have introduced a strong relations...
关键词:Hausdorff topology rough sets topology from rough sets attribute reduction 
Multi-granularity feature enhancement network for maritime ship detection
《CAAI Transactions on Intelligence Technology》2024年第3期649-664,共16页Li Ying Duoqian Miao Zhifei Zhang Hongyun Zhang Witold Pedrycz 
National Key Research and Development Program of China,Grant/Award Number:2022YFB3104700;National Natural Science Foundation of China,Grant/Award Numbers:62376198,61906137,62076040,62076182,62163016,62006172;The China National Scientific Sea‐floor Observatory,The Natural Science Foundation of Shanghai,Grant/Award Number:22ZR1466700;The Jiangxi Provincial Natural Science Fund,Grant/Award Number:20212ACB202001。
Due to the characteristics of high resolution and rich texture information,visible light images are widely used for maritime ship detection.However,these images are suscep-tible to sea fog and ships of different sizes...
关键词:object classification object recognition rough sets rough set theory 
A clinical decision support system using rough set theory and machine learning for disease prediction
《Intelligent Medicine》2024年第3期200-208,共9页Kamakhya Narain Singh Jibendu Kumar Mantri 
Objective Technological advances have led to drastic changes in daily life,and particularly healthcare,while traditional diagnosis methods are being replaced by technology-oriented models and paper-based patient healt...
关键词:Clinical decision support system Disease classification Machine learning classifier Medical data RECOMMENDATION Rough set 
Two kinds of average approximation accuracy被引量:1
《CAAI Transactions on Intelligence Technology》2024年第2期481-490,共10页Qingzhao Kong Wanting Wang Dongxiao Zhang Wenbin Zhang 
National Natural Science Foundation of China,Grant/Award Number:61976254;Natural Science Foundation of Fujian Province,Grant/Award Numbers:2020J01707,2020J01710。
Rough set theory places great importance on approximation accuracy,which is used to gauge how well a rough set model describes a target concept.However,traditional approximation accuracy has limitations since it varie...
关键词:rough sets rough set theory 
Multi-Granularity Neighborhood Fuzzy Rough Set Model on Two Universes
《Journal of Intelligent Learning Systems and Applications》2024年第2期91-106,共16页Ju Wang Xinghu Ai Li Fu 
The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborho...
关键词:Fuzzy Set Two Universes Multi-Granularity Rough Set Multi-Granularity Neighborhood Fuzzy Rough Set 
Complex Decision Modeling Framework with Fairly Operators and Quaternion Numbers under Intuitionistic Fuzzy Rough Context
《Computer Modeling in Engineering & Sciences》2024年第5期1893-1932,共40页Nadeem Salamat Muhammad Kamran Shahzaib Ashraf Manal Elzain Mohammed Abdulla Rashad Ismail Mohammed M.Al-Shamiri 
funded by King Khalid University through a large group research project under Grant Number R.G.P.2/449/44.
The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty while maintaining a balance between high accuracy,accessibility,and cost-effectiveness.This paper inves...
关键词:Intuitionistic fuzzy set quaternion numbers fuzzy logic DECISION-MAKING rough set 
On Multi-Granulation Rough Sets with Its Applications
《Computers, Materials & Continua》2024年第4期1025-1038,共14页Radwan Abu-Gdairi R.Mareay M.Badr 
Recently,much interest has been given tomulti-granulation rough sets (MGRS), and various types ofMGRSmodelshave been developed from different viewpoints. In this paper, we introduce two techniques for the classificati...
关键词:Multi-granulation rough sets data classifications information systems interior operators closure operators approximation structures 
Approximation Maintenance When Adding a Conditional Value in Set-Valued Ordered Decision Systems
《Open Journal of Applied Sciences》2024年第2期411-424,共14页Xiaoyu Wang Yuebin Su 
The integration of set-valued ordered rough set models and incremental learning signify a progressive advancement of conventional rough set theory, with the objective of tackling the heterogeneity and ongoing transfor...
关键词:Information Systems Rough Set Attribute Value Incremental Method 
A Neighborhood Rough Set Attribute Reduction Method Based on Attribute Importance
《American Journal of Computational Mathematics》2023年第4期578-593,共16页Peiyu Su Feng Qin Fu Li 
Attribute reduction is a hot topic in rough set research. As an extension of rough sets, neighborhood rough sets can effectively solve the problem of information loss after data discretization. However, traditional gr...
关键词:Rough Sets Attribute Importance Attribute Reduction 
检索报告 对象比较 聚类工具 使用帮助 返回顶部