FORGETTING

作品数:46被引量:38H指数:3
导出分析报告
相关领域:自动化与计算机技术更多>>
相关作者:平萍贾敏郭海燕石乐波杨炤宇更多>>
相关机构:对外经济贸易大学安庆师范大学浙江海洋大学首钢工学院更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划中国博士后科学基金更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 基金=国家重点基础研究发展计划x
条 记 录,以下是1-3
视图:
排序:
A traffic flow cellular automaton model to considering drivers' learning and forgetting behaviour被引量:3
《Chinese Physics B》2011年第2期575-585,共11页丁建勋 黄海军 田琼 
supported by the National Natural Science Foundation of China (Grant No. 70821061);the National Basic Research Program of China (Grant No. 2006CB705503)
It is known that the commonly used NaSch cellular automaton (CA) model and its modifications can help explain the internal causes of the macro phenomena of traffic flow. However, the randomization probability of veh...
关键词:cellular automaton model learning and forgetting behaviour Markov property 
Forgetting and small G protein Rac被引量:2
《Protein & Cell》2010年第6期503-506,共4页Yichun Shuai Yi Zhong 
This work was supported by research grants from the National Basic Research Program(973 Program)(Grant Nos.2006CB500806 and 2009CB941301);Beijing Municipal Science&Technology Plan(Z07000200540705)and Tsinghua-Yue-Yuen Medical Sciences Fund.
It is far from understood why we forget things that are known to us seconds ago.Emerging evidence emphasizes that small G protein Rac could be a key to understanding this type of rapid early memory forgetting.This cur...
关键词:FORGET GETTING RAC 
Search recommendation model based on user search behavior and gradual forgetting collaborative filtering strategy被引量:3
《The Journal of China Universities of Posts and Telecommunications》2010年第3期110-117,共8页LIU Chuan-chang State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China 
supported by the National Natural Science Foundation of China (60432010);the National Basic Research Program of China (2007CB307103);the Fundamental Research Funds for the Central Universities (2009RC0507);Important Science & Technology Specific Project of Guizhou Province (【2007】6017)
The existing search engines are lack of the consideration of personalization and display the same search results for different users despite their differences in interesting and purpose. By analyzing user's dynamic s...
关键词:search recommendation model search behavior expression keyword query graph gradual forgetting collaborative filtering 
检索报告 对象比较 聚类工具 使用帮助 返回顶部