INTEGRATORS

作品数:30被引量:35H指数:3
导出分析报告
相关领域:自动化与计算机技术更多>>
相关作者:吴俊吴新元更多>>
相关机构:南京大学曲阜师范大学南京信息工程大学更多>>
相关期刊:《Chinese Physics B》《Applied Mathematics and Mechanics(English Edition)》《Numerical Mathematics(Theory,Methods and Applications)》《Circuits and Systems》更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划河南省自然科学基金国家教育部博士点基金更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 期刊=Communications in Computational Physicsx
条 记 录,以下是1-3
视图:
排序:
Poisson Integrators Based on Splitting Method for Poisson Systems
《Communications in Computational Physics》2022年第9期1129-1155,共27页Beibei Zhu Lun Ji Aiqing Zhu Yifa Tang 
supported by the National Natural Science Foundation of China(Grant Nos.11901564 and 12171466).
We propose Poisson integrators for the numerical integration of separable Poisson systems.We analyze three situations in which Poisson systems are separated in threeways and Poisson integrators can be constructed by u...
关键词:Poisson systems Poisson integrators splitting method energy conservation 
Stochastic Multi-Symplectic Integrator for Stochastic Nonlinear Schrodinger Equation被引量:3
《Communications in Computational Physics》2013年第7期393-411,共19页Shanshan Jiang Lijin Wang Jialin Hong 
supported by the NNSFC(No.11001009);supported by the Director Foundation of GUCAS,the NNSFC(No.11071251);supported by the Foundation of CAS and the NNSFC(No.11021101,No.91130003).
In this paper we propose stochastic multi-symplectic conservation law for stochastic Hamiltonian partial differential equations,and develop a stochastic multisymplectic method for numerically solving a kind of stochas...
关键词:Stochastic nonlinear Schrodinger equations stochasticmulti-symplectic Hamiltonian systems multi-symplectic integrators 
Novel Multi-Symplectic Integrators for Nonlinear Fourth-Order Schrodinger Equation with Trapped Term被引量:3
《Communications in Computational Physics》2010年第3期613-630,共18页Jialin Hong Linghua Kong 
Jialin Hong is supported by the Director Innovation Foundation of ICMSEC and AMSS,the Foundation of CAS,the NNSFC(Nos.19971089,10371128 and 60771054);the Special Funds for Major State Basic Research Projects of China 2005CB321701;Linghua Kong is supported by the NSFC(No.10901074);the Provincial Natural Science Foundation of Jiangxi(No.2008GQS0054);the Foundation of Department of Education of Jiangxi Province(No.GJJ09147);the Young Growth Foundation of Jiangxi Normal University(No.2390);the Doctor Foundation of Jiangxi Normal University(No.2057);State Key Laboratory of Scientific and Engineering Computing,CAS.
The multi-symplectic Runge-Kutta (MSRK) methods and multi-symplecticFourier spectral (MSFS) methods will be employed to solve the fourth-orderSchrodinger equations with trapped term. Using the idea of split-step numer...
关键词:Schrodinger equation with trapped term multi-symplectic scheme Fourier spectral method conservation law split-step method 
检索报告 对象比较 聚类工具 使用帮助 返回顶部