INTEGRATORS

作品数:29被引量:35H指数:3
导出分析报告
相关领域:自动化与计算机技术更多>>
相关作者:吴俊吴新元更多>>
相关机构:南京大学曲阜师范大学南京信息工程大学更多>>
相关期刊:《Chinese Physics B》《Applied Mathematics and Mechanics(English Edition)》《ZTE Communications》《Annals of Applied Mathematics》更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划河南省自然科学基金国家教育部博士点基金更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 学科=理学—基础数学x
条 记 录,以下是1-10
视图:
排序:
Distributed strategies for pursuit-evasion of high-order integrators
《Autonomous Intelligent Systems》2024年第1期8-20,共13页Panpan Zhou Yueyue Xu Bo Wahlberg Xiaoming Hu 
supported by KTH Digital Futures Postdoctoral Program.
This paper presents decentralized solutions for pursuit-evasion problems involving high-order integrators with intracoalition cooperation and intercoalition confrontation.Distinct error variables and hyper-variables a...
关键词:Multi-agent systems Pursuit-evasion problems High-order integrators Distributed control 
Novel High-Order Mass-and Energy-Conservative Runge-Kutta Integrators for the Regularized Logarithmic Schrodinger Equation
《Numerical Mathematics(Theory,Methods and Applications)》2023年第4期993-1012,共20页Xu Qian Hong Zhang Jingye Yan Songhe Song 
supported by the National Natural Science Foundation of China(12271523,11901577,11971481,12071481);the National Key R&D Program of China(SQ2020YFA0709803);the Defense Science Foundation of China(2021-JCJQ-JJ-0538);the National Key Project(GJXM92579);the Natural Science Foundation of Hunan(2020JJ5652,2021JJ20053);the Research Fund of National University of Defense Technology(ZK19-37,ZZKY-JJ-21-01);the Science and Technology Innovation Program of Hunan Province(2021RC3082);the Research Fund of College of Science,National University of Defense Technology(2023-lxy-fhjj-002).
We develop a class of conservative integrators for the regularized logarithmic Schrodinger equation(RLogSE)using the quadratization technique and symplectic Runge-Kutta schemes.To preserve the highly nonlinear energy ...
关键词:Regularized logarithmic Schrödinger equation conservative numerical integrators invariant energy quadratization approach diagonally implicit Runge-Kutta scheme 
A Consistent Time Level Implementation Preserving Second-Order Time Accuracy via a Framework of Unified Time Integrators in the Discrete Element Approach
《Computer Modeling in Engineering & Sciences》2023年第3期1469-1487,共19页Tao Xue YazhouWang Masao Shimada David Tae Kumar Tamma Xiaobing Zhang 
In this work,a consistent and physically accurate implementation of the general framework of unified second-order time accurate integrators via the well-known GSSSS framework in the Discrete Element Method is presente...
关键词:Computational dynamics time integration Discrete Element Method(DEM) 
Poisson Integrators Based on Splitting Method for Poisson Systems
《Communications in Computational Physics》2022年第9期1129-1155,共27页Beibei Zhu Lun Ji Aiqing Zhu Yifa Tang 
supported by the National Natural Science Foundation of China(Grant Nos.11901564 and 12171466).
We propose Poisson integrators for the numerical integration of separable Poisson systems.We analyze three situations in which Poisson systems are separated in threeways and Poisson integrators can be constructed by u...
关键词:Poisson systems Poisson integrators splitting method energy conservation 
Improved Grid Relaxation with Zero-Order Integrators
《Journal of Applied Mathematics and Physics》2021年第6期1257-1270,共14页Jan Mueller Hans-Georg Matuttis 
In this research, we have improved a relaxation method for triangular meshes intended for finite element fluid simulations which contain discrete element particles. The triangle edges are treated as springs which rela...
关键词:Zero-Order Solver EQUILIBRATION Grid Generation Fluid Mechanics 
Convergence of an Embedded Exponential-Type Low-Regularity Integrators for the KdV Equation without Loss of Regularity被引量:2
《Annals of Applied Mathematics》2021年第1期1-21,共21页Yongsheng Li Yifei Wu Fangyan Yao 
In this paper,we study the convergence rate of an Embedded exponential-type low-regularity integrator(ELRI)for the Korteweg-de Vries equation.We develop some new harmonic analysis techniques to handle the"stability"is...
关键词:The KdV equation numerical solution convergence analysis error estimate low regularity fast Fourier transform 
HIGH-ORDER SYMPLECTIC AND SYMMETRIC COMPOSITION METHODS FOR MULTI-FREQUENCY AND MULTI-DIMENSIONAL OSCILLATORY HAMILTONIAN SYSTEMS
《Journal of Computational Mathematics》2015年第4期356-378,共23页Kai Liu Xinyuan Wu 
The multi-frequency and multi-dimensional adapted Runge-Kutta^NystrSm (ARKN) integrators, and multi-frequency and multi-dimensional extended Runge-Kutta-NystrSm (ERKN) integrators have been developed to efficientl...
关键词:Symplectic and symmetric composition methods Multi-frequency and multi-dimensional ERKN integrators ARKN integrators Multi-frequency oscillatory Hamiltonian systems. 
Accuracy and Computational Cost of Interpolation Schemes While Performing <i>N</i>-Body Simulations
《American Journal of Computational Mathematics》2014年第5期446-454,共9页Shafiq Ur Rehman 
The continuous approximations play a vital role in N-body simulations. We constructed three different types, namely, one-step (cubic and quintic Hermite), two-step, and three-step Hermite interpolation schemes. The co...
关键词:N-BODY Simulation INTEGRATORS INTERPOLATION SCHEMES 
Stochastic Multi-Symplectic Integrator for Stochastic Nonlinear Schrodinger Equation被引量:3
《Communications in Computational Physics》2013年第7期393-411,共19页Shanshan Jiang Lijin Wang Jialin Hong 
supported by the NNSFC(No.11001009);supported by the Director Foundation of GUCAS,the NNSFC(No.11071251);supported by the Foundation of CAS and the NNSFC(No.11021101,No.91130003).
In this paper we propose stochastic multi-symplectic conservation law for stochastic Hamiltonian partial differential equations,and develop a stochastic multisymplectic method for numerically solving a kind of stochas...
关键词:Stochastic nonlinear Schrodinger equations stochasticmulti-symplectic Hamiltonian systems multi-symplectic integrators 
Multisymplectic Fourier pseudo-spectral integrators for Klein-Gordon-Schrdinger equations被引量:4
《Science China Mathematics》2013年第5期915-932,共18页KONG LingHua WANG Lan JIANG ShanShan DUAN YaLi 
supported by National Natural Science Foundation of China(Grant Nos.10901074,11271171,91130003,11001009 and 11101399);the Province Natural Science Foundation of Jiangxi(Grant No. 20114BAB201011);the Foundation of Department of Education of Jiangxi Province(Grant No.GJJ12174);the State Key Laboratory of Scientific and Engineering Computing,CAS;supported by the Youth Growing Foundation of Jiangxi Normal University in 2010
A multisymplectic Fourier pseudo-spectral scheme, which exactly preserves the discrete multisym- plectic conservation law, is presented to solve the Klein-Gordon-SchrSdinger equations. The scheme is of spectral accura...
关键词:Klein-Gordon-SchrSdinger equations multisymplectic integrator Fourier pseudo-spectral meth- od. conservation law. soliton 
检索报告 对象比较 聚类工具 使用帮助 返回顶部