ITERATIVE_METHODS

作品数:118被引量:165H指数:6
导出分析报告
相关作者:王培光林鹤云曹广喜谈雪媛王元恒更多>>
相关机构:东南大学南京师范大学河北大学浙江师范大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金河北省自然科学基金国家重点基础研究发展计划北京市自然科学基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
Support vector machine with discriminative low-rank embedding
《CAAI Transactions on Intelligence Technology》2024年第5期1249-1262,共14页Guangfei Liang Zhihui Lai Heng Kong 
Natural Science Foundation of China under Grant 61976145 and Grant 62272319;Shenzhen Municipal Science and Technology Innovation Council under Grant JCYJ20210324094413037 and JCYJ20220818095803007.
Support vector machine(SVM)is a binary classifier widely used in machine learning.However,neglecting the latent data structure in previous SVM can limit the performance of SVM and its extensions.To address this issue,...
关键词:iterative methods machine leaning support vector machunes 
A Novel Iterative Method to Find the Moore-Penrose Inverse of a Tensor with Einstein Product
《Numerical Mathematics(Theory,Methods and Applications)》2024年第1期37-68,共32页Raziyeh Erfanifar Masoud Hajarian Khosro Sayevand 
funded by Iran National Science Foundation(INSF)under Project No.4013447.
In this study,based on an iterative method to solve nonlinear equations,a third-order convergent iterative method to compute the Moore-Penrose inverse of a tensor with the Einstein product is presented and analyzed.Nu...
关键词:TENSOR iterative methods Moore-Penrose inverse Einstein product 
On Polar Decomposition of Tensors with Einstein Product and a Novel Iterative Parametric Method
《Numerical Mathematics(Theory,Methods and Applications)》2024年第1期69-92,共24页Raziyeh Erfanifar Masoud Hajarian Khosro Sayevand 
funded by Iran National Science Foundation(INSF)under project No.4013447.
This study aims to investigate the polar decomposition of tensors with the Einstein product for thefirst time.The polar decomposition of tensors can be computed using the singular value decomposition of the tensors wit...
关键词:Iterative methods Einstein product polar decomposition of a tensor polar factor order of convergence 
Iteration dependent interval based open‐closed‐loop iterative learning control for time varying systems with vector relative degree
《CAAI Transactions on Intelligence Technology》2023年第3期645-660,共16页Yun‐Shan Wei Jin‐Fan Wang Jia‐Xuan Wang Qing‐Yuan Xu Jaime Lloret 
supported in part by the National Natural Science Foundation of China of No.61903096;Guangzhou Key Laboratory of Software‐Defined Low Latency Network of No.202102100006;Guangdong Basic and Applied Basic Research Foundation of No.2020A1515110414.
For linear time varying(LTV)multiple input multiple output(MIMO)systems with vector relative degree,an open‐closed‐loop iterative learning control(ILC)strategy is developed in this article,where the time interval of...
关键词:intelligent control iterative methods 
Iterative methods for nonlinear equations and their semilocal convergence
《Frontiers of Mathematics in China》2023年第2期105-124,共20页Liang CHEN Chuanqing GU Lin ZHENG 
We are concerned with the numerical methods for nonlinear equation and their semilocal convergence in this paper.The construction techniques of iterative methods are induced by using linear approximation,integral inte...
关键词:Nonlinear equation numerical method semilocal convergence Newton method Banach space 
Ostrowski’s Method for Solving Nonlinear Equations and Systems
《Journal of Mechanics Engineering and Automation》2023年第1期1-6,共6页Christian Beleña Postigo 
The dynamic characteristics and the efficiency of the Ostrowski’s method allow it to be crowned as an excellent tool for solving nonlinear problems.This article shows different versions of the classic method that all...
关键词:Iterative methods nonlinear equations convergence order stability. 
ITERATIVE METHODS FOR OBTAINING AN INFINITE FAMILY OF STRICT PSEUDO-CONTRACTIONS IN BANACH SPACES
《Acta Mathematica Scientia》2022年第5期1765-1778,共14页Meng WEN Haiyang LI Changsong HU Jigen PENG 
supported by the National Natural Science Foundation of China(12001416,11771347 and 12031003);the Natural Science Foundations of Shaanxi Province(2021JQ-678).
In this paper,we introduce a general hybrid iterative method to find an infinite family of strict pseudo-contractions in a q-uniformly smooth and strictly convex Banach space.Moreover,we show that the sequence defined...
关键词:MKC iterative algorithm strict pseudo-contraction β-Lipschitzian d-strongly monotone Banach spaces 
High-Order Iterative Methods Repeating Roots a Constructive Recapitulation
《Applied Mathematics》2022年第2期131-146,共16页Isaac Fried 
This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of init...
关键词:Roots of Nonlinear Equations Multiple Roots Multiplicity Index of a Root Estimation of the Multiplicity Index of a Root High-Order Iterative Methods Root Bracketing Alternatingly Converging Methods Contrarily Converging Methods 
Computer Geometries for Finding All Real Zeros of Polynomial Equations Simultaneously
《Computers, Materials & Continua》2021年第11期2635-2651,共17页Naila Rafiq Saima Akram Mudassir Shams Nazir Ahmad Mir 
In this research article,we construct a family of derivative free simultaneous numerical schemes to approximate all real zero of non-linear polynomial equation.We make a comparative analysis of the newly constructed n...
关键词:POLYNOMIALS simultaneous iterative methods random initial guesses lower bound local computational order CAS-mathematica and mat lab 
Higher Order Strongly Biconvex Functions and Biequilibrium Problems
《Advances in Linear Algebra & Matrix Theory》2021年第2期31-53,共23页Muhammad Aslam Noor Khalida Inayat Noor 
In this paper, we introduce and study some new classes of biconvex functions with respect to an arbitrary function and a bifunction, which are called the higher order strongly biconvex functions. These functions are n...
关键词:Biconvex Functions Convex Functions -Convex Functions -Convex Sets Parallelogram Laws Biequilibrium Problems Bivariational Inequalities Iterative Methods Convergence Analysis 
检索报告 对象比较 聚类工具 使用帮助 返回顶部