ACKNOWLEDGMENTS This work was supported by the NationM Nature Science Foundation of China (No.11104256) and the Open Project of State Key Laboratory Cultivation base for Nonmetal Composites and Functional Mate- rials (No.11zxfk19). We thank Dr. Shuang-lin Hu from the Chemistry Department of Uppsala University in Sweden for helpful suggestion. We would also thank the Hefei National Laboratory for Physical Sciences at the Microscale in University of Science and Technology of China for the computational facilities (Gaussian 09).
The potential energy surfaces (PES) of unimolecular dissociation reactions for di-ethyl beryl- lium and di-t-butyl beryllium are investigated by B3LYP, CCSD(T), and G3B3 approaches. Possible reaction pathways thro...